

Leibniz-Rechenzentrum
der Bayerischen Akademie der Wissenschaften

Direktorium:

Prof. Dr. H.-G. Hegering (Vorsitzender)
Prof. Dr. A. Bode
Prof. Dr. Chr. Zenger

Leibniz-Rechenzentrum
Boltzmannstraße 1
85748 Garching

UST-ID-Nr. DE811305931

Telefon: (089) 35831-8784
Telefax: (089) 35831-9700
E-Mail: lrzpost@lrz.de
Internet: http://www.lrz.de

Technical Report

Towards Optimizing a Novel
Seismological Solver Code

Dr. Martin Felder
Leibniz-Rechenzentrum

Dr. Martin Käser, Dr. Michael Dumbser
Department of Civil and Environmental Engineering, University of

Trento, Trento, Italy

June 2006 LRZ-Bericht 2006-04

LRZ

i

1 Project Information..1

1.1 Project description..1

1.2 Description of the FORTRAN Code ..2

2 Optimizing the Solver...4

2.1 Code structure analysis...4

2.2 Optimization tasks..7

2.3 Benchmark results ..9
2.3.1 Benchmark configurations...9
2.3.2 Serial performance...11
2.3.3 Dependence on basis function order..12
2.3.4 Scaling properties ..13
2.3.5 Superficial stall cycle analysis...15

2.4 Conclusion and recommendations..17

3 Sparse Matrix Multiplication Benchmark ...18

3.1 Background ..18

3.2 Benchmark setup ..18

3.3 Results ..18

3.4 Recommendations ..21

Appendix A Original Version of SPL_MATMUL (SVN r31), by Michael Dumbser22

Appendix B Modified version of SPL_MATMUL ..23

LRZ

1

1 Project Information

1.1 Project description
Research on the interior structure of the earth and its geophysical properties are mainly based on results of
seismology. Today, computer simulations of the propagation of seismic waves represent an invaluable
tool for the understanding of the wave phenomena, their generation and their consequences. However, the
simulation of a complete, highly accurate wave field in realistic media with complex geometry an geolo-
gical rheologies is still a great challenge. Therefore, the aim of the proposed project is the intensive appli-
cation of the highly accurate and powerful simulation code SEISSOL in order to provide realistic simula-
tions of earthquake scenarios. The code is able to incorporate complex geological models and accounts
for a variety of geophysical processes affecting seismic wave propagation, such as strong material hetero-
geneities, viscoelastic attenuation and anisotropy.

Kinematic models of real earthquake rupture processes, geometrically difficult internal and external mate-
rial boundaries as well as free surface topography will be included. The code is based on the so-called
ADER-Discontinuous Galerkin method that has the unique property of a numerical scheme that achieves
arbitrarily high approximation order for the solution of the governing partial differential equations in
space and time using three-dimensional tetrahedral meshes. The flexibility of the tetrahedral meshes al-
lows for the discretization of geometrically extremely complex three-dimensional computational domains
that might be prescribed by the geological structure and the distribution of geophysical parameters.

The method is conceptually designed in a way such that the order of approximation can arbitrarily be
increased in order to reach machine precision as the capacity and performance of computing facilities
improve in the future. Differences between simulation data, i.e. synthetic seismograms, and reference
solutions or worldwide registered real seismograms can then be interpreted as effects of the used model
geometry or the geophysical model parameterization. The result will be a better understanding and know-
ledge of the earth’s interior.

However, a comparison with other well-established simulation algorithms is indispensable as far as accu-
racy, memory requirements and CPU-time requirements are concerned. For this reason the European Ma-
rie Curie Research and Training Network SPICE (Seismic wave Propagation and Imaging in Complex
media: a European network) was launched recently, where one of the authors (Martin Käser) is involved
(www.spice-rtn.org). One of the main targets of this project is the construction of a database, where three-
dimensional test models and verified seismograms are stored that can be accessed by researchers world-
wide via internet. The proposed Discontinuous Galerkin method with the ADER time integration appro-
ach will contribute to this database. First results have already been presented on international conferences
and published in geophysical journals [1],[2],[3],[4].

Within the Emmy Noether Programme (KA 2281/1-1) of the Deutsche Forschungsgemeinschaft Martin
Käser is currently spending two years as a visiting researcher at the University of Trento in Italy. In the
following phase of this programme a new research group should be established at the Department of E-
arth and Environmental Sciences, Geophysics section, of the Ludwig-Maximilians-Universität München.
This group will mainly work on large scale numerical simulations of earthquake scenarios. Due to the
close collaboration with Prof. H. Igel from the Department of Earth and Environmental Sciences in Mu-
nich within the HLRB project (h019z), the joint supervision of the PhD student J. de la Puente and the
future built-up of the new research group at the same department a number of long term perspectives are
opened in order to use and further develop the optimized version of SEISSOL for computationally inten-
sive applications.

Furthermore, a strong link between research in numerical geophysics and the Leibniz-Rechenzentrum
(LRZ) will be established through various seminars on different topics of numerical and computational
seismology. The indispensable collaboration with high performance computing centres will be a main
issue and the upcoming installation of the SGI Tornado System at the LRZ with represent one of the most
important aspects.

http://www.spice-rtn.org/

 LRZ

2

The „Intensive Application, Optimization and Porting Initiative“ should lead to a jointly developed pro-
duction code, which efficiently and accurately computes a complete three-dimensional wave field in
complex geometrical and geological structures. The application of highly accurate algorithms by the use
of massively parallel high performance computer technologies will contribute to the solution of actual
problems in numerical seismology in order to improve ground motion prediction caused by strong
earthquake events. The long term goal should be to compute global wave propagation in a frequency ran-
ge (>2Hz) that is of particular interest for civil and earthquake engineers. This way, extremely precise
estimations of local seismic hazard will be possible. By synthesizing highly accurate accelerograms deci-
sions of earthquake engineers designing earthquake resistant structures can greatly be supported and will
help to optimize the trade-off between safety and cost.

Additionally, the simulation of realistic earthquake scenarios together with a coupling with shallow water
simulations can lead to remarkable improvements in the early-time monitoring or forecasting of tsunamis.

Therefore, the „Intensive Application, Optimization and Porting Initiative“ of the LRZ represents an ex-
cellent and promising opportunity to solve most recent, challenging and especially computationally inten-
sive problems. We want to stress once more, that for future research in the field of computational geophy-
sics and seismology a solid basis of the collaboration between geoscientists and experts from high per-
formance computing centers is an essential requirement. The establishment of such a joint approach
might have a pioneering character and demonstrate the importance of combining the expertise of these
two field when approaching complex large scale computational problems in numerical geophysics.

References:

[1] Dumbser, M. (2005). Arbitrary High Order Schemes for the Solution of Hyperbolic Conservation

Laws in Complex Domains, Shaker Verlag, Aachen.
[2] Dumbser, M. and M. Käser (2006). An Arbitrary High Order Discontinuous Galerkin Method for

Elastic Waves on Unstructured Meshes II: The Three-Dimensional Isotropic Case,
 to appear in Geophs. J. Int.
[3] Käser, M., M. Dumbser (2006). An Arbitrary High Order Discontinuous Galerkin Method for Elastic

Waves on Unstructured Meshes I: The Two-Dimension Isotropic Case with External Source
Terms, to appear in Geophys. J. Int.

[4] Käser, M., M. Dumbser, J. de la Puente and H. Igel (2006). An Arbitrary High Order Discontinuous
Galerkin Method for Elastic Waves on Unstructured Meshes III: Viscoelastic Attenuation, submit-
ted to Geophys. J. Int.

1.2 Description of the FORTRAN Code
The existing code is based on the Discontinuous Galerkin Method using Arbitrary high order DERiva-
tives (ADER-DG) and is programmed in FORTRAN 90. It runs in its parallel MPI version on the SGI
Altix at the Leibniz-Rechenzentrum in Munich.

The data structure is arranged in a way, that the data is organized in objects (TYPE) that finally represent
dynamic, multi-dimensional array. The code itself is built up by dividing the source code into modules in
order to assure a logical and intuitively understandable structured.

As the numerical method (ADER-DG) represents an explicit one-step time integration scheme in order to
solve the governing partial differential equations, a large amount of calculations is carried out on a rather
small amount of data, i.e. the numerical algorithm is programmed in a cache-oriented manner.

The computationally most expensive operations are matrix-vector and matrix-matrix-multiplications, in
particular, which are embedded within nested DO-loops.

LRZ

3

The input is strictly based on a small number of ASCII-files, specifying the simulation parameters, the
material description, the mesh geometry and auxiliary files including the coefficients of the basis func-
tions as well as the entries of stiffness, flux and mass matrices of the DG approach. In addition, the paral-
lel version of SEISSOL requires to read in a mesh partitioning file precomputed by a mesh partitioner
(e.g. METIS) that specifies the distribution of the unstructured tetrahedral mesh on the desired number of
processors.

The output can consists of quite large and numerous files consisting of huge datasets, that e.g. contain all
coefficients of the approximation basis polynomials for each tetrahedral mesh element. These coefficients
are used in a post-processing step to visualize the complete three-dimensional wave-field. Furthermore,
time histories of single components of the wave field are outputted as seismograms in order to analyse the
numerical earthquake simulations in detail. The position of the seismogram registrations can be chosen
arbitrarily. The output of these seismograms enables the user to apply standard signal processing tools for
the interpretation of the computed synthetic seismograms. All data is output in ASCII-format.

 LRZ

4

2 Optimizing the Solver

2.1 Code structure analysis
SeisSol is a solver for seismological wave-propagation problems. It is written in well-commented and
somewhat object-oriented Fortran90. All major data arrays and parameters are thematically clustered and
hidden in extensive hierarchical structures via TYPE definitions. As a simple example consider

 TYPE(tStructMesh)
 |_[some arrays and scalars]
 |_TYPE(tBoundaryGeometryStruct)
 |_TYPE(tSolidBodies)
 |_[some arrays and scalars]
 |_TYPE(tCube)
 |_TYPE(tPrism)
 |_TYPE(tEllipsoid)

Due to the complexity of the problem these structures, and the associated MODULEs, tend to become so-
mewhat lengthy. For instance, TYPE(tGalerkin), responsible for the Galerkin time propagation algo-
rithm, comprises 159 entities on its first level alone, 19 of which are other user-defined TYPEs. The corre-
sponding module galerkin3d.f90 grew to over 4300 lines.

To facilitate cooperation between the persons responsible for the project and LRZ, the entire source tree
has been placed under version control using a Subversion repository. Currently there is only one branch
of code because commits were fairly infrequent and did create conflicts. Since coding activities by the
users are expected to rise in frequency, it is likely that a separate optimization branch will be opened for
the next round of optimization, if applicable.

The code behaves quite typically for a scientific application, in that it roughly performs the following
actions in turn:

1. Read parameter file (location of files, approximation parameters, log options, etc.)
2. Read static input data (problem description, pre-calculated matrices, etc.)
3. Setup initial field and boundary conditions
4. Enter main loops and iterate until max. time or # of iterations is reached

A simplified callgraph is shown in Figure 1. It was created on altix2 using VTune in the following
command sequence (in the following, $EXE, $PAR, and $LOG are assumed to contain names of the corre-
sponding SeisSol files):

module load vtune/3.0
vtl activity -c callgraph -app "$EXE","$PAR" -moi "$EXE"
vtl run
vtl view -gui

The time needed for the above steps 1. to 3. is small compared to the time spent within the main loops,
therefore optimization was restricted to the routine QuadFreeADERGalerkin3D_us containing these
loops, and its subroutines. The performance-relevant part is summarized in Table 1, with the second col-
umn giving the approximate percentage of total time (for Benchmark 1, see below) spend in the corre-
sponding line. Pseudo-code is printed in italics.

LRZ

5

Figure 1: Incomplete callgraph for the SeisSol program. Top 10 total time routines (i.e. including subroutines)
are highlighted. Since this is only a 5 iteration run, initialization carries somewhat too much weight.

 LRZ

6

Table 1: Performance-critical part of the code. %t gives the total CPU time spent, for Benchmark 1.
label %t

|

(a)
|
|

(b)

|
|

(c)
|
|
|

3.6

4.8

8.0

13.0

4.9

0.9

0.9
3.6

4.7

5.5

4.0

12.0

sum
65.9

! calculate coefficients for all grid elements
DO iElem = 1, MESH%nElem
 [load required matrices and temporary variables]
 CALL turbo_sum_permut_mat3D(...)
 DO i = 1, DISC%Galerkin%NonZeroCoeff
 [get the non-zero indices r,r1,r2,l,m from a lookup-table]
 ! Do the interior of the tensor multiplication
 Coeff_level1(:,:) = JacobianProductSum(:,:,r1,r2,r)* &
 DISC%Galerkin%Coeff_level03D(r,r1,r2,l,m)
 Coeff_level2(:,:) = Coeff_level2(:,:) + &
 mdtr(r)/DISC%Galerkin%Faculty(r+1)*Coeff_level1(:,:)
 ! If update marker is set (inner loop terminated), update DGwork
 IF(DISC%Galerkin%NonZeroCoeffIndex(6,i).EQ.1) THEN
 DISC%Galerkin%DGwork(l,:,iElem) = DISC%Galerkin%DGwork(l,:,iElem) &
 + MATMUL(Coeff_level2(:,:), DISC%Galerkin%dgvar(m,:,iElem,1))
 Coeff_level2(:,:) = 0.
 ENDIF
 ENDDO
ENDDO
! now calculate fluxes for all element sides
DO iElem = 1, MESH%nElem

 ! Multiplication with Kxi stiffness matrix
 auxvar(:,:) = 0.
 DO iNz = 1, DISC%Galerkin%NonZero_Kxi
 l = DISC%Galerkin%IndexNonZero_Kxi(1,iNz)
 m = DISC%Galerkin%IndexNonZero_Kxi(2,iNz)
 auxvar(l,:) = auxvar(l,:) + &
 DISC%Galerkin%CNonZero_Kxi(iNz)*DISC%Galerkin%DGwork(m,:,iElem)
 ENDDO
 auxMatrix(:,:) = - (A(:,:)*JacobiT(1,1) + B(:,:)*JacobiT(1,2) + &
 C(:,:)*JacobiT(1,3))
 [MATMUL by hand]
 [repeat the above procedure twice, namely for Keta and Kzeta matrices]
 DO iSide = 1, MESH%GlobalElemType
 [find neighboring element at side iSide from lookup table]
 [load neighboring element's parameters]
 ! Flux contribution of the element itself
 CALL JacobiNormal3D(...)
 auxMatrix(:,:) = 0.5*MATMUL(T,MATMUL(locA+locabsA,iT))* &
 2.*DISC%Galerkin%geoSurfaces(iElem,iSide)
 ! Multiplication with the flux matrix of the element itself
 DO iVar = 1, EQN%nVar
 auxvar(1:LocDegFr,iVar) = MATMUL(&
 DISC%Galerkin%FMatrix3D(1:LocDegFr,1:LocDegFr,0,1,iSide), &
 DISC%Galerkin%DGwork(1:LocDegFr,iVar,iElem))
 ENDDO
 [MATMUL by hand]
 [case selection by neighbor's type: Inflow, Outflow, Wall,
 MPI boundary, and standard case]
 [--> for standard case, calculation similar to the above block
 is repeated with the neighbor]
 ENDDO
 [update field with computed delta]
 ENDDO

LRZ

7

As can be seen, the block [MATMUL by hand] occurs quite frequently. It usually looks like this:

 DO kk = 1, EQN%nVar
 DO iDegFr = 1, LocDegFr
 dudt(iDegFr,:)=dudt(iDegFr,:)+ auxMatrix(:,kk)*auxvar(iDegFr,kk)
 ENDDO
 ENDDO

The size of the colon dimension here is also EQN%nVar. These code snippets will be referred to later,
when discussing optimization.

2.2 Optimization tasks
First of all, note that code for certain classes of problems was not optimized, as determined by the pa-
rameters in Table 2.

Table 2: The SeisSol software was optimized for only a subset of its possible applications.

Parameter Possible values Notes

problem dimensionality 2D, 3D 2D not optimized: used only for test cases
spatial order of approximation static, p-adaptive static not optimized: obsolete, most likely

used only for reference purposes
type of algorithm used CPU-intensive,

memory-intensive
memory-intensive not optimized; will
probably not be applicable to full-scale
problems

parallelism single thread, MPI so far the MPI part of the code was not
touched, since it does seem to work
reasonably well

The following description lists specific major optimization work performed on the code by Subversion
repository revision (rXX), and other important changes.

Revision 07: Last revision without p-adaptation.

Revision 18: Last revision before optimization.
 Martin Kaeser implemented p-adaptation: Here the order of the approximation basis functions is

proportional to the size of the corresponding grid element, within a user defined range. This is
reflected by the variable LocDegFr in the above code excerpt, which therefore varies from grid
element to grid element.

Revision 20:
 Moved coefficient calculation for Label (a) out of the main loop, whereby everything is packed

into a new local variable Coeff_level0. The new code for Label (a) merely reads

Coeff_level2(:,:) = Coeff_level2(:,:) + &
 JacobianProductSum(:,:,r1,r2,r)*Coeff_level0(i)

 Switched dimensions for dndt and auxvar, with corresponding loop reordering. For instance,

 LRZ

8

the block [MATMUL by hand] contains colons in the second dimension of dndt, which are in
effect constituting an additional, inner loop. This is suboptimal and was changed to

 DO iDegFr = 1, LocDegFr
 DO kk = 1, EQN%nVar
 dudt(:,iDegFr)=dudt(:,iDegFr)+ auxMatrix(:,kk)*auxvar(kk,iDegFr)
 ENDDO
 ENDDO

Unfortunately, rearrangement of indices is counter-productive at Label (b) and similar lines in the
case selection statement, but the overall effect is a slight speedup.

 Introduced a new routine flat_sum_permut_mat3d to replace turbo_sum_permut_mat3d,

which contains several IF-clauses in the innermost of five nested loops, calculating the elements
of 5-dimensional array JacobianProductSum. The new routine treats approximation order 1
and 2 directly, i.e. without loops, and uses a buffer (array starts at index -1) for order 3 and up,
thereby avoiding the IF-clauses for the price of some superfluous calculations.

Revision 22:
 Replaced all performance-relevant matrix multiplications in QuadFreeADERGalerkin3D_us by

calls to the BLAS routine DGEMM from the Intel Math Kernel Library (MKL). This highly
optimized library routine can obtain 95% of peak performance on the Itanium2 processor.
However, it is designed for large matrices, whereas in SeisSol most matrix operations involve
dimensions in the order of 10. For this reason it was decided to use the F77 interface to the library
instead of the F95 wrapper, which would have led to additional overhead.

With these modifications, for instance Label (c) above becomes

 ! Multiplication with the flux matrix of the element itself
 ! auxvar = (FMatrix3D . DGwork)^T = DGwork^T . FMatrix3D^T
call DGEMM('T','T',nV,LocDegFr,LocDegFr,1., &

 DISC%Galerkin%DGwork(1,1,iElem),DISC%Galerkin%nDegFr, &
 DISC%Galerkin%FMatrix3D(1,1,0,1,iSide),DISC%Galerkin%nDegFr, &
 0.,auxvar,nV)

The code has been garnished with additional comments describing the matrix algebra performed,
to increase readability. Furthermore, the outer product calculation in routine DGSponge was for-
mulated in terms of a BLAS call to DGER.

Note: It is important not to accidentally use F90 array notation when passing arguments to the
function, because the compiler may decide to make copies of the arrays, which renders the stride
specification invalid.
Note: This in turn seems to cause strange runtime error messages („wrong dimensions for
DGEMM“) when compiled with -O3, although the output has so far been found unaffected

LRZ

9

2.3 Benchmark results

2.3.1 Benchmark configurations
The following configurations for the sample problem LOH4 with reduced grid size and METIS-
partitioning for 1, 8 and 16 processes were selected as benchmarks (Table 3).

Table 3: Benchmark configurations.

Name BF order min/max # of iterations
Benchmark 1 1 / 3 200
Benchmark 2 2 / 4 50
Benchmark 3 3 / 6 30
Benchmark 4 n / n, n=0,...,5 20

The second column of the table refers to the parameters „Minimum basis functions Order“ and „Basis
functions Order“, respectively.

When interpreting the results below in view of future production runs, it has to be considered that
a) the grid size is very small, and scaling is expected to be better for larger grids, due to the

increasing ratio of bulk computation to MPI communication, plus
b) the runs are very short, which means the initialization overhead is higher than in practice. For

Benchmark 2 on one CPU this overhead is about 5%.

Ideally, these simulation runs would be analyzed in all levels of detail by Intel's VTune suite, but due to
stability and configuration problems this approach has been unsuccessful. Thus three different tools were
used instead, namely, from low to high detail:

 /usr/bin/time: For measuring Wall Clock time for the complete run. The amount of System

Time consumed is almost negligible, unless output is required from very frequent iterations. The
SeisSol code also prints the execution time spent in the main calculation routines. For
verification, the different time measures for one Benchmark 2 run of code Rev. 22 are given in
Table 4.

Table 4: Different ways to measure computation time.

Method runtime / sec MFlop/s Comment

time command (real) 2011 497.7 wall clock

time command (user) 1968 508.6 w/o system, e.g. I/O, swap and such

CPU_CYCLES 1962 510.3 w/o system etc.; should be ~=user time

call CPU_TIME 1897 527.7 excludes some data init routines

 pfmon: Used for obtaining program-wide counts of processor events and CPU cycles. A typical

call would be:

 LRZ

10

 pfmon --aggregate-results --follow-all --events=FP_OPS_RETIRED, \
 CPU_CYCLES,IA64_INST_RETIRED_THIS,BACK_END_BUBBLE_ALL \
 mpirun -np $NP $EXE $PAR >& $LOG

The quotient of FP_OPS_RETIRED and CPU_CYCLES, or the results from time yields perform-
ance in MFlop/s, like in the Table above. For comparison, maximum performance of the Itanium2
at 1.6 GHz is assumed to be 6.4 GFlop/s, since it has four FPUs. In practice, reaching 5% peak
performance is considered acceptable, 8-10% is already very good.

 histx: Used for drilling down to function and source code level. This utility can sample the
instruction counter with its own timer interval (~ 0.977 ms), or respond to CPU events like
pfmon does. To assign timer ticks to source lines like in the above code excerpt,

histx -l $EXE $PAR > $LOG

was submitted as a serial job. For interactive use, execution must be bound to a specific CPU, and
the runs were found to be ~5-10% slower. Each histx run produces an ASCII file in the execution
directory, which can be parsed for further processing. By convention, these were renamed to
${EXE}_<cpu-event-name>.histx., whereby TIMER was substituted for the event name for
the above case. The simplest form of postprocessing the files is to parse them with the iprep
tool, which results in a table showing the counts per routine and line, e.g.:

iprep seissolxx_TIMER.histx

When a timer run is combined with a FP counter run at a fixed sampling rate, e.g.

histx -e pm:FP_OPS_RETIRED@100000 -l $EXE $PAR > $LOG

Flop/s can be theoretically calculated for single source lines using the formula

 Flop/s = FP*100000/(ticks*0.977[ms]) = 108 * FP/(0.977*ticks) [1/s],

whereby the tick length 0.977 ms is predefined by the histx TIMER event.

A perlscript was written for this purpose, yet the results need to be treated with care because sam-
pling can be off by one or two source lines, and it is not clear whether there is a systematic shift
between timer and CPU sampling. In any case, call

flopcalc.pl seissolxx_ FP_OPS_RETIRED.histx seissolxx_TIMER.histx

to obtain an iprep-like report containing MFlop/s and peak percentages. Another perlscript cre-
ates reports similar to Table 1, optionally using several .histx files at the same time. Use

histx2xls.pl galerkin3d.f90 <name1>.histx [<name2>.histx …] | \

 less -RA

to browse through annotated source code at the terminal, or

LRZ

11

histx2xls.pl -o bench.xls galerkin3d.f90 <name1>.histx \

 [<name2>.histx …]

to write the output in the form of a spreadsheet. LATEX table output will be supported in the near
future.

2.3.2 Serial performance

The effect of various optimization attempts described in the previous Section was monitored using
Benchmark 1.

Benchmark 3 was introduced to get a first estimate on the effect of approximation order on the results. As
can be seen from the Table 5 below, the BLAS optimized version of the code reduces the runtime by over
50% with respect to the reference, whereas for the lower order Benchmark 1, the reduction is a mere 18%,
worse than the manually optimized code. This is an effect of matrix dimensions increasing with the ap-
proximation order, which lets BLAS run more efficiently.

Table 5: Effect of different optimization measures.

 CPU time / s

Code version Benchmark 1 Benchmark 3
Revision 18: Baseline 7572 23954
partially pulled Coeff_level0 calculation out of the loop 7114

completed Coeff_level0 pull out 6453

introduced flat_sum_permut_3d 6800 14800

Revision 20: Changed order of indices for dndt and auxvar 5536

Revision 22: Introduced BLAS routine calls 6232 11700

Since Benchmark 3 took too much computation time, it was replaced by Benchmark 4 for a more system-
atic investigation in the next Subsection. However, the fairly extensive run showed in which direction the
time spent per code line will probably shift for operational runs: Label (a) alone takes up 28.7% of total
CPU time, as seen in the following code excerpt from r20 (cf. Table 1):

Note the significant percentage of runtime taken up by the index lookups alone, but also the slight uncer-
tainty of line assignments by histx. In this run, the innermost loop of routine DGSponge took another
16.2% of total CPU time. This was an incentive for reformulating it in terms of BLAS, too. In contrast,
flat_sum_permut_mat3d lost significance, taking a mere 1.2%.

In cases where there was no apparent shift between timer and FP counter sampling, between roughly
2.5% and 13% of the peak performance was measured for the time-critical loops. This hints at the fact
that access to high-dimensional, large data arrays like JacobianProductSum(:,:,r1,r2,r) in the
code above causes frequent cache misses. Additionally, indirect indexing (r1,r2,r are taken from index
array each loop iteration) prevents the compiler from pipelining of loops even at the highest optimization
level, as compilations with the --opt_report switch showed. Unfortunately measuring the performance
of the BLAS calls is not possible in the same manner.

 LRZ

12

Table 6: Same as Table 1, but for Benchmark 3.

%t

2.43 DO i = 1, DISC%Galerkin%NonZeroCoeff

 ! Get the non-zero indices from the lookup-table

2.86 l = DISC%Galerkin%NonZeroCoeffIndex(1,i)

3.03 m = DISC%Galerkin%NonZeroCoeffIndex(2,i)

4.19 r = DISC%Galerkin%NonZeroCoeffIndex(3,i)

1.55 IF(l.GT.LocDegFr .or. m.GT.LocDegFr .or. r.GT.LocPoly) THEN

 CYCLE

 ENDIF

1.64 r1 = DISC%Galerkin%NonZeroCoeffIndex(4,i)

2.11 r2 = DISC%Galerkin%NonZeroCoeffIndex(5,i)

 ! Do the interior of the tensor multiplication

28.73 Coeff_level2(:,:) = Coeff_level2(:,:) + &

 JacobianProductSum(:,:,r1,r2,r)*Coeff_level0(i)

 ! If update marker is set (inner loop terminated), update DGwork

1.53 IF(DISC%Galerkin%NonZeroCoeffIndex(6,i).EQ.1) THEN

0.73 DISC%Galerkin%DGwork(l,:,iElem) = DISC%Galerkin%DGwork(l,:,iElem) &

3.90 + MATMUL(Coeff_level2(:,:), DISC%Galerkin%dgvar(m,:,iElem,1))

1.20 Coeff_level2(:,:) = 0.

 ENDIF

 ENDDO

2.3.3 Dependence on basis function order
The most widely used arrays in performance critical inner loops possess dimensions of which at least one
depends on the approximation order. In contrast, the number of grid elements constitutes the outermost
loop and is therefore mostly optimization-neutral. Particularly the buffer arrays dndt and auxvar are
dimensioned (# variables) x (degrees of freedom), whereby the former is more or less fixed to nine in the
current configuration, and the latter (DOF) depends polynomially on the basis function order:

order 0 1 2 3 4 5 6 7 8 9

DOF 1 4 10 20 35 56 84 120 165 220

As mentioned above, DGEMM calls should become more efficient at larger matrix dimensions. Figure 2
shows a comparison of three code versions by basis function order. Unfortunately, r22 does not take ad-
vantage of the larger matrices, so there must be other bottlenecks involved.

LRZ

13

Figure 2: Dependence of run time on approximation order for Benchmark 4, on 8 CPUs. Results from three differ-
ent source code versions are shown.

10000

2.3.4 Scaling properties
Most of the benchmarks were run with serial code or at a fixed number of CPUs, because MPI call timing
may change considerably as long as the serial performance is being optimized. Domain decomposition
alone is used for parallelization. Since mesh partitions for 1, 8 and 16 processes were provided for the
LRZ test case, the following speedups could be measured, based on CPU cycles from Benchmark 2:

Table 8: Scaling properties of the application, for Benchmark 2.

 speedup factor

Source version 1 CPU 8 16

reference: r18 1 4.86 7.03

manually optimized: r20 1 5.23 3.79

BLAS: r22 1 4.92 7.34

Other scaling tests revealed that the scaling does not seem to vary much with benchmark type and code
version. This is not surprising because of the low serial overhead and the very basic way in which MPI is
used - each process reads its own grid chunk in the beginning, then initializes and time-propagates it, then
synchronizes with other processes.

0 1 2 3 4 5
100

1000

r18
r20
r22

basis function order

to
ta

l C
P

U
 ti

m
e

/ s
ec

Order r18 r20 r22
0 95.01 106.02 103.53
1 173.89 166.34 151.33
2 409.9 362.56 314.92
3 1089.32 863.87 814.02
4 2954.74 2260.36 1902.34
5 8072.52 5789.06 5134.49

 LRZ

14

There is a reproducible anomaly for r20 at 16 CPUs, which will be looked at again. The scaling is not
satisfactory yet, but this may in part be due to the relatively low number of elements in the small test grid,
which makes MPI boundaries larger in comparison to the number of cells completely within one partition.

However, the main issue is that the METIS partitioning tool so far does not take into account p-
adaptation. Thus while it achieves near optimal load balance for elements with equal computational ef-
fort, in cases where a significantly different number of elements with high local DOF end up in one parti-
tion, the other MPI processes stall at the end-of-iteration synchronization. This behavior is visualized in
Figure 3, which was obtained using

module load mpi_tracing
make -j ADD_OPT=-vtrace # clean build required
export VT_CONFIG= vt_seissol.ini
mpirun -np 8 $EXE $PAR # submit via PBS, actually!
traceanalyzer seissol_bench5_np8.stf

whereby vt_seissol.ini contains:

LOGFILE-NAME seissol_bench5_np8.stf
LOGFILE-FORMAT STF
disable all MPI activity
ACTIVITY MPI OFF
enable all bcasts, recvs and sends
SYMBOL MPI_WAITALL ON
SYMBOL MPI_IRECV ON
SYMBOL MPI_ISEND ON
SYMBOL MPI_BARRIER ON
SYMBOL MPI_ALLREDUCE ON
SYMBOL MPI_REDUCE ON
enable all activities in the Application class
ACTIVITY Application ON

Figure 3: Top: Timseries of an 8-CPU MPI run with r23, using the same configuration as in Benchmark 2, i.e. basis
function order 2 to 4. Part of the initialization and five iterations are shown for all eight processes. Light color des-
ignates user code execution, dark color MPI calls. The vertical bars show collective MPI operations. Bottom: Same
but using basis function order 3 only. The load imbalance is dramatically reduced.

It is obvious from the Figure that many cycles are wasted in MPI-waits for the p-adaptive configuration.
Note however that this is but a semi-quantitative comparison, since initialization and iteration times differ
significantly between both runs due to the nonlinear dependence on p. Strangely enough, for instance a

LRZ

15

benchmark run with the non-adaptive code version r07, using 200 iterations and order 2 throughout, yiel-
ded speedup factors of 5.24 and 7.68, for 8 and 16 CPUs, respectively, not much different from what the
table above shows. This will be looked at again.

Another issue is that the routine in charge for synchronization, MPIExchangeValues, is

a) calculating the necessary message length based on the maximum DOF per element
b) written in a very general fashion, which allows for a domain size change at runtime and therefore

allocates and deallocates the necessary buffer arrays dynamically at each iteration.

2.3.5 Superficial stall cycle analysis

The Itanium processor offers a wide range of performance counters (>400) suitable for further analysis of
the observed hotspots in the code. They can be sampled either with VTune or by performing multiple
histx runs as described above, using different counters. To optimize performance, it is often better not to
look at the computational throughput, but rather at the delays caused by inefficient use of the CPU’s func-
tional units. The corresponding events are called “bubbles” since they effectively reduce the flow though
the processors 8-stage processing pipe. For further information on the Itanium2 architecture the reader is
referred to the Intel website or the latest HPC Programming and Optimization Course notes (password
available upon request).

We can but scratch the complex field of stall cycle analysis here. Consider again the performance-critical
inner loop segment in Table 9 below. By comparing the fraction of CPU time spent in each line with the
fraction of total bubbles (counter BACK_END_BUBBLE.ALL), one can estimate the efficiency of that par-
ticular line compared to the average efficiency of the code sampled. In our case, it is interesting to note
that loading the indices l,m,r* at the beginning of the loop is quite inefficient, while the calculation of
Coeff_level2 is relatively efficient, and the efficiency of the matrix multiplication at the end is slightly
less than average. This is plausible because for the load operations, the Floating Point Units (FPUs) can-
not be utilized, whereas in matrix and vector operations a healthier mix of computation and data transfer
is possible. The analysis also suggests it may be easier to optimize the calculation of
DISC%Galerkin%Dgwork than of Coeff_level2.

Further hints can be gained by considering the contributions from different pipeline stages. Stages 1 to 3
belong to the pipeline front end (BACK_END_BUBBLE.FE) which deals with fetching and decoding in-
structions. Like in the given case, they are usually performance neutral, except in cases where the source
code is voluminous and strongly non-local, i.e. contains frequent and unpredictable long branches. Stages
4 and 5 are responsible for register management (BE_RSE_BUBBLE.ALL) and do not even appear here.
They may come into play for very involved computations, (manually or automatically) unrolled loops,
and/or nested or recursive subroutine calls, where many intermediate results have to be stored and the
CPU runs out of registers. Stage 6 (BE_EXE_BUBBLE.ALL) is the most frequent cause for delay in real-
world applications, because its task is to feed data to the execution units (2 integer units and 2 FPUs).
Since a double precision multiply-add is already 50% faster than a load from Level 2 cache, and Level 1
cache is not used for FP data, it is easy to see why these units tend to run out of data unless the code can
be software-pipelined very well. In our case the compiler reports that the Coeff_level2 line has been
software-pipelined, but so far (ifort v9.1) this feature is only implemented for innermost loops – here
matrix columns – and becomes efficient only for high loop counts. Still, it is probably responsible for the
relatively few bubbles in this line. A score of sub-counters is available for fine-grained analysis of Stage
6, but their interpretation is complex and beyond the scope of this report.

With Stage 6a (BE_L1D_FPU_BUBBLE.ALL) we denote the two micropipelines between Stages 6 and 7,
which run within the FPUs and Level 1 cache management, respectively. Stalls from the FPU micropipe-
line would be caused by data transfer outrunning FP computations – a rather unlikely case. Level 1 cache
management may cause stalls if integer (e.g. address) data has to be swapped in and out of cache fre-

 LRZ

16

quently, but the causes may hard to get at. Stages 7 and 8 (BE_FLUSH_BUBBLE.ALL) finally clean up the
computations by performing exception handling and data write-back, respectively. Write-back is asyn-
chronous and therefore mostly performance-neutral. Stage 7 also flushes the pipeline in case of branch
misprediction: This may explain its relatively high influence (15-20%) in front of the first IF-clause and
in the Coeff_level2 loop, where software-pipelining in conjunction with a relatively low trip count in
both matrix dimensions causes many instructions to be flushed at the end of the loop.

B
A
C
K
_
E
N
D
_
B
U
B
B
L
E
.
A
L
L

B
A
C
K
_
E
N
D
_
B
U
B
B
L
E
.
F
E

B
E
_
E
X
E
_
B
U
B
B
L
E
.
A
L
L

B
E
_
L
1
D
_
F
P
U
_
B
U
B
B
L
E
.
A
L
L

B
E
_
F
L
U
S
H
_
B
U
B
B
L
E
.
A
L
L

Table 9: Same as Table 1, but for r23 and Benchmark 2, with data in columns 2
to 6 showing the CPU pipeline “bubbles” in % of all bubbles which occurred
during one run of the program, and this fraction further broken down into ap-
proximate pipeline stages (1 to 8). The corresponding Itanium2 Performance
Counter events are given I the first row. See text for details.

%t total 1-3 6 6a 7-8

2.06 3.68 3.36 0.02 0.30 DO i = 1, DISC%Galerkin%NonZeroCoeff

 ! Get the non-zero indices from the lookup-table

0.28 0.23 0.20 0.02 0.01 l = DISC%Galerkin%NonZeroCoeffIndex(1,i)

0.27 m = DISC%Galerkin%NonZeroCoeffIndex(2,i)

3.00 4.26 3.47 0.79 r = DISC%Galerkin%NonZeroCoeffIndex(3,i)

0.27 0.20 0.17 0.01 0.02 r1 = DISC%Galerkin%NonZeroCoeffIndex(4,i)

2.64 5.33 4.12 0.01 1.20 r2 = DISC%Galerkin%NonZeroCoeffIndex(5,i)

1.03 1.36 1.21 0.05 0.10 IF(l.GT.LocDegFr .or. m.GT.LocDegFr .or. r.GT.LocPoly) THEN

 CYCLE

 ENDIF

 ! Do the interior of the tensor multiplication

24.4 13.8 0.38 10.42 0.68 2.31 Coeff_level2(:,:) = Coeff_level2(:,:) + &

 JacobianProductSum(:,:,r1,r2,r)*Coeff_level0(i)

 ! If update marker is set (inner loop terminated),
 ! update DGwork

1.29 3.32 3.13 0.19 IF(DISC%Galerkin%NonZeroCoeffIndex(6,i).EQ.1) THEN

1.42 1.22 0.26 0.64 0.02 0.31 DISC%Galerkin%DGwork(l,:,iElem)=
 DISC%Galerkin%DGwork(l,:,iElem) &

6.39 8.07 7.52 0.02 0.53 +MATMUL(Coeff_level2(:,:),DISC%Galerkin%dgvar(m,:,iElem,1))

1.64 0.73 0.72 0.01 Coeff_level2(:,:) = 0.

 ENDIF

 ENDDO

LRZ

17

To summarize, the method of stall cycle analysis is very powerful but requires some experience to yield
more than trivial and/or inconclusive results. It is not recommended for users to dive deeper than to the
described first level of refinement. Still, useful hints for critical code sections may be already obtained in
this manner.

2.4 Conclusion and recommendations
The SeisSol software package has been put under revision control and serially optimized to a certain de-
gree. Further optimization of the main loops in the 3D/computation intensive version of the code may be
possible but may not lead to significant speed gain, except under special circumstances. To achieve fur-
ther performance improvement, the following actions are recommended for the next round of optimiza-
tion and/or in the frame of the current code restructuring:

1. Implement p-adaptation aware partitioning. This is very important to achieve good load

balancing.

2. If possible, restructure the ADER-DG algorithm such that optimized linear algebra library
routines can act on few large matrices instead of thousands of small ones.

3. Along the same lines, investigate if the use of optimized standard sparse matrix algorithms is
possible without too much overhead, instead of using the current indirect indexing scheme.

4. Improve scaling by optimizing the MPI synchronization routine. It is too general for the current,
static implementation of the unstructured grid.

5. There are indications that replacing EQN%nVar with a constant (i.e. PARAMETER) can speed up
the code considerably. Maybe try creating different code versions for all possible cases.

6. Define a more comprehensive benchmark suite using a set of different problems. This would
make performance assessments more robust. Artificial cases like the cubical domains used for
convergences analysis could be included.

7. Investigate if a hybrid MPI/auto-parallelization or MPI/OpenMP approach leads to improvement.
This is however unlikely as long as inner loop counts are very small.

18 LRZ

4 Sparse Matrix Multiplication Benchmark

4.1 Background

A new routine, SPL_MATMUL, has been introduced into the SeisSol code to unify and speed up sparse matrix
multiplication. This routine is being compared against the Math Kernel Library standard routine for this
task, mkl_dcoomm. At the same time, there is the question whether sparse matrix algebra makes sense in all
cases, since it requires a more complex algorithm which may slow things down if the matrix is not sparse
enough. Therefore, full matrix multiplication by the Fortran intrinsic MATMUL as well as by the MKL routine
DGEMM were included in the comparison. Similar investigations could be carried out for other sparse matrix
manipulation routines, in case they turn out to be time-critical.

4.2 Benchmark setup

The benchmark was conducted interactively on altix2 in double precision arithmetic. SPL_MATMUL stems
from SVN repository r31. To compile and run, the following command sequence was issued:

module switch fortran fortran/9.1 # or 8.1, see below
module load mkl/8.1 # or 8.0
module load liblrz
cd /projects/seissol/benchmarks/sparse_matrix
ifort -O2 -o sparse_matrix_test -r8 sparsemat.f90 F77Utils.f \
statistics.f90 ~/SeisSol/common/SP_MATMUL.f \
sparse_matrix_test.f90 $LIBLRZ_LIB $MKL_LIB # or -O3

./sparse_matrix_test

The code itself uses loops of the form

kDummy = get_cycles()
do i=1, nRepetitions

call dummy_routine(A,B,C)
call SPL_MATMUL(C(1:N,1:N), A, B(1:N,1:N), N, N)

enddo
kTime = get_cycles() - kDummy - kTimeOffs

whereby dummy_routine does not do anything except preventing the compiler to pass parts of the matrices
in registers, merely by being defined in a separate module. Its overhead through all repetitions is measured
and stored in kTimeOffset. Arrays B and C have native dimensions (N+c)×(N+c), where c is a constant
with value 100 by default. nRepetitions is dynamically adjusted such that the runtime for different N is
approximately comparable. get_cycles() is a routine from the LRZ library. As sparsity decreases, sparse
matrix A is subsequently filled with random (non-zero) elements. The measured cycles for each combination
of routine, size, and sparsity, are normalized by nRepetitions and N3.

In addition, it was suspected that SPL_MATMUL could possibly be further improved for small matrices by
passing full arrays and their leading dimensions as arguments, as done in mkl_dcoomm. This prevents the
compiler from making copies of the specified subarrays prior to the routine call. The modified routine is
given in the appendix.

4.3 Results

Figure 4 shows an excerpt of the benchmark results. The benchmark was run on altix2 on a single CPU,
using Intel compiler version 9.1 and MKL 8.1. Additional runs were made with the modified SPL_MATMUL

routine and with the old compiler version 8.1, and MKL 8.0 (Figure 5). The following observations can be
made:

LRZ 19

Matrix size: 1000

.1 1 10

sparsity [%]

.1

1

10

r
u
n
t
i
m
e

Matrix size: 215

.1 1 10

.1

1

10

r
u
n
t
i
m
e

Matrix size: 46

.1 1 10

.1

1

10

r
u
n
t
i
m
e

Matrix size: 10

.1 1 10

.1

1

10

r
u
n
t
i
m
e

SPL_MATMUL

mkl_dcoomm

MATMUL

dgemm

(a) Optimization option -O2.

Matrix size: 1000

.1 1 10

sparsity [%]

.1

1

10

r
u
n
t
i
m
e

Matrix size: 215

.1 1 10

.1

1

10

r
u
n
t
i
m
e

Matrix size: 46

.1 1 10

.1

1

10

r
u
n
t
i
m
e

Matrix size: 10

.1 1 10

.1

1

10

r
u
n
t
i
m
e

SPL_MATMUL

mkl_dcoomm

MATMUL

dgemm

(b) Optimization option -O3.

Figure 4: Sparse matrix benchmark results for varying matrix size N and sparsity. Runtime is normalized
to N3 and given in arbitrary units.

• mkl_dcoomm performance is strongly dependent on sparsity, such that the routine is in general only
useful for very sparse matrices. Interestingly, it becomes ineffective earlier for larger matrices, i.e.
the absolute number of valid elements in the matrix seem to be the performance-driving factor.

• SPL_MATMUL has an offset indirectly proportional to matrix size, which may be due the creation of
temporary arrays (from the array slices passed as parameters) prior to entering the routine. However
this offset diminishes as matrix size increases, and the procedure itself is less dependent on sparsity.

• MATMUL is slower than DGEMM in all cases, but seems to be differently implemented at -O3 and -O2
optimization. At -O2, the gap to DGEMM grows with the matrix size, while at -O3 it is quite small from
the beginning and shrinks with the size. At N=1000 the -O3 gap to DGEMM is 11% (17% with the old
compiler and MKL version).

• DGEMM has the most stable performance, above N'100 its speed settles to about 0.5 of our arbitrary
units. It does not seem to have changed between compiler and MKL versions.

• Decreasing c to 10 makes exploiting cache lines (128 bytes) at small matrix sizes easier for the MKL

20 LRZ

Matrix size: 1000

.1 1 10

sparsity [%]

.1

1

10

r
u
n
t
i
m
e

Matrix size: 215

.1 1 10

.1

1

10

r
u
n
t
i
m
e

Matrix size: 46

.1 1 10

.1

1

10

r
u
n
t
i
m
e

Matrix size: 10

.1 1 10

.1

1

10

r
u
n
t
i
m
e

SPL_MATMUL

mkl_dcoomm

MATMUL

dgemm

(a) -O3 and modified version of SPL_MATMUL.

Matrix size: 1000

.1 1 10

sparsity [%]

.1

1

10

r
u
n
t
i
m
e

Matrix size: 215

.1 1 10

.1

1

10
r
u
n
t
i
m
e

Matrix size: 46

.1 1 10

.1

1

10

r
u
n
t
i
m
e

Matrix size: 10

.1 1 10

.1

1

10

r
u
n
t
i
m
e

SPL_MATMUL

mkl_dcoomm

MATMUL

dgemm

(b) -O3 but using old compiler version 8.1 and MKL version
8.0.

Figure 5: Same as Figure 4, but using different parameters.

routines, but did not have a notable effect on performance (not shown). It stands to reason that the
data is being rearranged inside the routines prior to computations.

• The modified version of SPL_MATMUL (Figure 5a) features a smaller offset at low sparsity and is in
general somewhat faster than the standard version. This can be seen by comparing against DGEMM,
because as a side effect mkl_dcoomm was also performing faster in this run. The behavior is repro-
ducible, but so far not completely understood.

• The main change between old and new compiler and MKL versions concerns MATMUL, which gener-
ally seems to have been improved, especially at small matrix sizes (Figure 5b). There may also be a
slight (few %) performance increase for SPL_MATMUL, which is not even visible in the graphs.

• There is some (shot-)noise in the data, probably from interference by other processes, page misses,
and/or issues with the timing routine. This is difficult to model in such a simple benchmark and must
be watched out for in the real application. Also, it should be mentioned that the -O3 optimized code
regularly produced segmentation faults after successfully executing.

LRZ 21

4.4 Recommendations

1. For small but performance-relevant sparse matrix multiplications consider using mkl_dcoomm instead
of SPL_MATMUL. If sparsity is >10%, use DGEMM instead.

2. SPL_MATMUL is strongest at moderate matrix size and sparsity, and at large matrices with low sparsity.
The modified version of the routine should be used.

3. The level of sparsity beyond which DGEMM becomes very hard to beat is around 10%-20% for small
matrices, and drops to 5% at N=1000.

4. The benchmark has only been run for randomly filled square matrices using the coordinate-type sparse
matrix indexing convention. If the sparsity has a known structure – symmetry, blocks, multi-diagonal,
etc. – there may be faster, more specialized indexing conventions and corresponding library routines
available. Have a look at the MKL manual.

22 LRZ

A Original Version of SPL_MATMUL (SVN r31), by Michael Dumbser
C !

C ! The subroutine SPL_MATMUL multiplies a sparse matrix A from the left

C ! to a full matrix B and adds the result to the matrix C:

C !

C ! C_ik = C_ik + A_ij * B_jk

C !

PURE SUBROUTINE SPL_MATMUL(C, A, B, n, o)

C !---

IMPLICIT NONE

C !---

C ! Type declaration

TYPE tSparseMatrix

INTEGER :: m,n ! Dimension of the original matrix

INTEGER, ALLOCATABLE :: nNonZero(:) ! Number of non-zero entries

INTEGER, ALLOCATABLE :: NonZeroIndex1(:) ! Index 1 into non-zero elements

INTEGER, ALLOCATABLE :: NonZeroIndex2(:) ! Index 2 into non-zero elements

REAL, ALLOCATABLE :: NonZero(:) ! Values

END TYPE tSparseMatrix

C ! Argument list declaration

INTEGER :: n,o

TYPE(tSparseMatrix) :: A ! (n,n)

REAL :: C(n,o) ! (n,o)

REAL :: B(n,o) ! (n,o)

C ! Local variable declaration

INTEGER :: iNonZero,i,j

REAL :: BT(o,n)

REAL :: CT(o,n)

C !---

INTENT(IN) :: n,o,A,B

INTENT(INOUT) :: C

C !---

C !

CT = 0.

BT = TRANSPOSE(B)

DO iNonZero = 1, A%nNonZero(n)

i = A%NonZeroIndex1(iNonZero)

j = A%NonZeroIndex2(iNonZero)

CT(:,i) = CT(:,i) + BT(:,j)*A%NonZero(iNonZero)

ENDDO

C = C + TRANSPOSE(CT)

C !

END SUBROUTINE SPL_MATMUL

LRZ 23

B Modified version of SPL_MATMUL

The routine is listed here in free-form, since there are no separate F77-compilers anymore and thus compil-
ing in fixed-form does not gain anything.

!

! The subroutine SPL_MATMUL multiplies a sparse matrix A from the left

! to a full matrix B and adds the result to the matrix C:

!

! C_ik = C_ik + A_ij * B_jk

!

PURE SUBROUTINE SPL_MATMUL(C, leadc, A, B, leadb, n, o)

!---

IMPLICIT NONE

!---

! Type declaration

TYPE tSparseMatrix

INTEGER :: m,n ! Dimension of the original matrix

INTEGER, ALLOCATABLE :: nNonZero(:) ! Number of non-zero entries

INTEGER, ALLOCATABLE :: NonZeroIndex1(:) ! Index 1 into non-zero elements

INTEGER, ALLOCATABLE :: NonZeroIndex2(:) ! Index 2 into non-zero elements

REAL, ALLOCATABLE :: NonZero(:) ! Values

END TYPE tSparseMatrix

! Argument list declaration

INTEGER :: n,o, leadb, leadc

TYPE(tSparseMatrix) :: A ! (n,n)

REAL :: C(leadc,o) ! (n,o)

REAL :: B(leadb,o) ! (n,o)

! Local variable declaration

INTEGER :: iNonZero,i,j

REAL :: BT(o,n)

REAL :: CT(o,n)

!---

INTENT(IN) :: n,o,A,B, leadb, leadc

INTENT(INOUT) :: C

!---

!

CT = 0.

BT = TRANSPOSE(B(1:n,:))

DO iNonZero = 1, A%nNonZero(n)

i = A%NonZeroIndex1(iNonZero)

j = A%NonZeroIndex2(iNonZero)

CT(:,i) = CT(:,i) + BT(:,j)*A%NonZero(iNonZero)

ENDDO

C(1:n,:) = C(1:n,:) + TRANSPOSE(CT)

!

END SUBROUTINE SPL_MATMUL

	1 Project Information
	1.1 Project description
	1.2 Description of the FORTRAN Code

	2 Optimizing the Solver
	2.1 Code structure analysis
	2.2 Optimization tasks
	2.3 Benchmark results
	2.3.1 Benchmark configurations
	2.3.2 Serial performance
	2.3.3 Dependence on basis function order
	2.3.4 Scaling properties
	2.3.5 Superficial stall cycle analysis

	2.4 Conclusion and recommendations

	3 Sparse Matrix Multiplication Benchmark
	3.1 Background
	3.2 Benchmark setup
	3.3 Results
	3.4 Recommendations

