Max–Planck–Institut für Astrophysik

SuperMUC Status and Results Workshop Garching, July 8–9, 2014

Exploring the Violent Birth of Neutron Stars with SuperMUC

Hans-Thomas Janka Max Planck Institute for Astrophysics, Garching CRAB Nebula with pulsar, remnant of Supernova 1054

HST (NASA, ESA)

SN Remnant Cassiopeia A

X-ray (CHANDRA, green-blue); optical (HST, yellow); IR (SST, red)

How do massive stars explode?

• Supernovae:

Spectacularly bright end stages of stellar evolution

- Birth of neutron stars and black holes
- Origin of heavy elements
- Observational signals: neutrinos, gravitational waves

Detecting Core-Collapse SN Signals

IceCube

VIRGO

Superkamiokande

The Team

Students, Postdocs, Collaborators

- Tobias Melson, Florian Hanke
- Alexander Summa
- Michael Gabler, Maxime Viallet
- Andreas Marek (High Level Application Support, RZG)
- Ewald Müller, Bernhard Müller (Monash Univ., Melbourne), Annop Wongwathanarat
- Irene Tamborra (Univ. Amsterdam), Georg Raffelt (MPP)

Supernova Modeling: Multi-Physics Problem

The Simulation Code

Prometheus/CoCoNuT – VERTEX: 1D, 2D, 3D

• Hydro modules:

Newtonian: *Prometheus* + effective relativistic grav. potential. General relativistic: *CoCoNuT* Higher-order Godunov solvers, explicit.

- Neutrino Transport: VERTEX Two-moment closure scheme with variable Eddington factor based on model Boltzmann equation; fully energy-dependent, O(v/c), implicit, ray-by-ray-plus in 2D and 3D.
- Most complete set of neutrino interactions applied to date.
- Different nuclear equations of state.
- Spherical polar grid or axis-free Yin-Yang grid.

Parallel-Programming Model

- Mixed (hybrid) MPI-OpenMP parallelization: Hydro module fully MPI parallelized Transport module MPI+OpenMP parallelized over radial "rays"
- ✓ Several OpenMP threads (\leftrightarrow cores) per MPI task (\leftrightarrow nodes)
- ✓ GPUs can be used for special-physics "sub-problems" (speed-up by factor 2-3; A. Marek, RZG)
- X Memory RAM: 1–2 Gbyte/core needed (tables, transport variables)
- **x** Need powerful cores:

Microphysics is compute-intense Tabular input would require even more memory/core

Performance and Portability of our Supernova Code *Prometheus-Vertex*

- Code employs hybrid MPI/OpenMP programming model (collaborative development with Katharina Benkert, HLRS).
- Code has been ported to different computer platforms, optimized, and further parellelized by Andreas Marek, High Level Application Support, Rechenzentrum Garching (RZG).
- Code shows excellent parallel efficiency, which can be fully exploited in 3D.

Strong Scaling

A. Marek et al. (CUG 2013)

Performance and Portability of our Supernova Code *Prometheus-Vertex*

- Floating-point performance within roof-line model.
- P-V achieves ~12% of peak performance for double precision calculations on 8-core node with two Intel Xeon E5540 "Nehalem" CPUs (2.53 GHz).
- Around 10% of peak performance obtained also on other platforms.
- Good performance for complex scientific application with non-trivial instruction mix.
- Further optimization by reducing number of memory references.

A. Marek et al. (CUG 2013)

Computing Requirements for 2D & 3D Supernova Modeling

Time-dependent simulations: $t \sim 1$ second, $\sim 10^6$ time steps!

CPU-time requirements for one model run:

★ In 2D with 600 radial zones, 1 degree lateral resolution:

~ $3*10^{18}$ Flops, need ~ 10^{6} processor-core hours.

In 3D with 600 radial zones, 1.5 degrees angular resolution:

~ $3*10^{20}$ Flops, need ~ 10^{8} processor-core hours.

GARCHING

John von Neumann Institut für Computing

3D Supernova Simulations

EU PRACE and GAUSS Centre grants of ~360 million core hours allow us to do the first 3D simulations on 16.000 cores.

SuperMUC Petascale System

3D SN Models: SASI in the Postshock Accretion Layer

27 M_{sun} progenitor (WHW 2002)

F. Hanke et al., ApJ 770 (2013) 66

Laboratory Astrophysics

"SWASI" Instability as an analogue of SASI in the supernova core

Foglizzo et al., PRL 108 (2012) 051103

Constraint of experiment: No convective activity

3D Core-Collapse Models: Neutrino Signals 11.2, 20, 27 M_{sun} progenitors (WHW 2002)

SASI produces modulations of neutrino emission and gravitational-wave signal.

3D Core-Collapse Models: Neutrino Signals 11.2, 20, 27 M_{sun} progenitors (WHW 2002)

SASI produces modulations of neutrino emission and gravitational-wave signal.

arXiv:1307.7936)

3D Core-Collapse Models: Gravitational Waves

27 M_{sun} progenitor (WHW 2002)

A New Nonradial 3D Instability

Dipole asymmetry of lepton number emission

Lepton number flux: ve minus anti-ve

$$(F_{\nu_e} - F_{\bar{\nu}_e}) / \langle F_{\nu_e} - F_{\bar{\nu}_e} \rangle$$

Tamborra, Hanke, THJ, Müller, Raffelt & Marek, arXiv:1402.5418

amborra, Hanke, THJ, Müller, Raffelt & Marek, arXiv:1402.5418

Summary

3D supernova models reveal new, interesting phenomena

3D supernova simulations are making progress towards successfully exploding models!

Stay tuned!