

# Efficient ab-initio approaches towards the photochemistry of functional molecules on metal surfaces

#### Reinhard J. Maurer

Theoretical Chemistry, Technical University Munich

09.07.2014





#### Binary Computer Logic $\Rightarrow$ The field-effect-transistor Gate Voltage controls ON and OFF state

concept

demonstration

22 nm FinFET



Lilienfeld, 1926 Heil, 1934



A

Atalla and Dawon Kahng Bell Labs, 1959

Intel IEDM, 2012

Lundstrom, www.nanohub.org





#### Moore's Law



Lundstrom, www.nanohub.org





#### Moore's Law



Lundstrom, www.nanohub.org

Link: The scale of the Universe





Molecular Nanotechnology  $\Rightarrow\Rightarrow$  Single Molecules are basic units





#### Molecular Nanotechnology $\Rightarrow\Rightarrow$ Single Molecules are basic units

Azobenzene

Molecular Switches







Molecular Nanotechnology  $\Rightarrow\Rightarrow$  Single Molecules are basic units

Azobenzene



Molecular Switches

+Contact

ON







Molecular Nanotechnology  $\Rightarrow\Rightarrow$  Single Molecules are basic units







#### Light- or Electron-triggered Molecular Switching



#### Information Storage

#### Logics

#### Surface Functionalization

#### **Reinhard Maurer**

#### SuperMUC Workshop, Garching



Quenching excited states

#### Strong coupling

Steric hindrance































# Our Approach





 $\frac{1}{2}\int dr^3 dr^3 \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} + E^{xc}[\rho]$ 

Large-Scale Density-Functional Theory Simulations using CASTEP

Exchange-Correlation Functional Approx.

- Local Density Approx. (LDA)
- Generalized Gradient Approx. (GGA), ...

Problems:

- Self-Interaction Errors
- Neglect of Van-der-Waals interactions

CASTEP Segall, et al., J. Phys.: Cond. Matt. 14 (2002), 2717.

 $\overline{E_{\text{GS}}^{\text{DFT}}[
ho]} = \overline{T_s[
ho]} + \int dr^3 v^{\text{ext}}(\mathbf{r}) \overline{
ho}(\mathbf{r}) +$ 







Large-Scale Density-Functional Theory Simulations using CASTEP

 $\begin{array}{l} E_{\rm GS}^{\rm DFT}[\rho] \ = \ T_s[\rho] + \int dr^3 v^{\rm ext}(\mathbf{r})\rho(\mathbf{r}) + \\ \frac{1}{2} \int \int dr^3 dr^3 \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} + E^{\rm xc}[\rho] + E_{\rm vdw}^{\rm surf} \end{array}$ 

$$E_{
m vdw}^{
m surf} = \sum_{A} \sum_{B} f(r_{
m cut}, A, B) rac{C_6^{AB}}{r_{AB}^6}$$

 $f(r_{\text{cut}}, A, B) \dots$  damping function

 $C_6^{AB}$ ... vdW coefficients generated from ab-initio polarizability and dielectric function of solid

CASTEP Segall, *et al.*, J. Phys.: Cond. Matt. **14** (2002), 2717. vdw<sup>surf</sup> Ruiz, *et al.*, PRL **108** (2012), 146103.

- 1) periodic boundary conditions
- 2) semi-local XC
- ultrasoft pseudopotential plane waves (USPP)
- 4) van-der-Waals correction, DFT+vdw<sup>surf</sup>

McNellis et al., PRB 80 (2009), 205414.







#### **Reinhard Maurer**

#### SuperMUC Workshop, Garching



# Adsorbate Structure











## Adsorbate Structure









|             | z (Å)      | $\omega$ (°) | β (°)     |
|-------------|------------|--------------|-----------|
| low cov.    | 2.61       | 4.5          | -2.0      |
| (T = 0 K)   |            |              |           |
| high cov.   | 2.81       | 11.7         | 15.4      |
| (T = 0 K)   |            |              |           |
|             |            |              |           |
|             |            |              |           |
| exp.        | 2.97       | -0.7         | 17.7      |
| (T = 210 K) | $\pm 0.05$ | $\pm 2.3$    | $\pm 2.7$ |

Collaboration with Prof. Stefan Tautz, FZ Jülich Comparison to X-Ray Standing Wave experiments Mercurio, Maurer, *et al.*, PRB, 88 (2013), 035421.



## Adsorbate Structure









|                                     | z (Å)      | $\omega$ (°) | β (°)     |
|-------------------------------------|------------|--------------|-----------|
| low cov.                            | 2.61       | 4.5          | -2.0      |
| (T = 0 K)<br>high cov.<br>(T = 0 K) | 2.81       | 11.7         | 15.4      |
| high cov.                           | 2.98       | 9.0          | 17.7      |
| (T = 210 K)                         |            |              |           |
| exp.                                | 2.97       | -0.7         | 17.7      |
| (T = 210 K)                         | $\pm 0.05$ | $\pm 2.3$    | $\pm 2.7$ |

- exp. conditions = high coverage
- accurate adsorbate structure
- incl. anharmonic effects at finite T

Collaboration with Prof. Stefan Tautz, FZ Jülich Comparison to X-Ray Standing Wave experiments Mercurio, Maurer, *et al.*, PRB, 88 (2013), 035421.







Maurer, Reuter, Angew. Chem. Int. Ed. 51 (2012), 12009-12011.

**Reinhard Maurer** 

































Maurer, Reuter, Angew. Chem. Int. Ed. 51 (2012), 12009-12011.

#### **Reinhard Maurer**

#### SuperMUC Workshop, Garching





# Molecule Functionalization







## Efficient Excited State Methodology - ΔSCF ?







## Efficient Excited State Methodology - ΔSCF ?







## Efficient Excited State Methodology - ΔSCF ?







# Efficient Excited State Methodology - $\triangle$ SCF ?





 $E_{ex} = E(e^- \uparrow) - E(groundstate)$ 

# Constraining occupation of molecular states

Gunnarsson, Lundqvist, PRB **13** (1976), 4274–4298. Jones, Gunnarsson, Rev. Mod. Phys. **61** (1989), 689–746.





# Efficient Excited State Methodology - △SCF ?



Constraining occupation of molecular states

- Molecular states on the surface?

ASCF DFT

## $E_{ex} = E(e^- \uparrow) - E(groundstate)$

- + Speed of a DFT calculation
- Can only handle excitations with single particle character
- Accuracy?!

Gunnarsson, Lundqvist, PRB **13** (1976), 4274–4298. Jones, Gunnarsson, Rev. Mod. Phys. **61** (1989), 689–746. Maurer and Reuter, JCP **135** (2011), 224303.





# Efficient Excited State Methodology - △SCF ?





## $E_{ex} = E(e^- \uparrow) - E(groundstate)$

- + Speed of a DFT calculation
- Can only handle excitations with single particle character

- Accuracy?!

Gunnarsson, Lundqvist, PRB **13** (1976), 4274–4298. Jones, Gunnarsson, Rev. Mod. Phys. **61** (1989), 689–746. Maurer and Reuter, JCP **135** (2011), 224303.





## Efficient Excited State Methodology - Ie∆SCF !





$$|\psi_{c}\rangle = \sum_{i} |\psi_{i}\rangle \langle \psi_{i}|\phi_{c}\rangle$$

$$\rho = \sum_{i} f_{i}|\psi_{i}'\rangle \langle \psi_{i}'| + f_{c}|\psi_{c}\rangle \langle \psi_{c}|$$

 $\phi_c$  ... Gasphase molecular orbital

$$\sum_{i} f_i + \sum_{c} f_c = N_e$$

Gavnholt *et al.*, PRB **78** (2008), 075441. Maurer and Reuter, JCP **139** (2013), 014708.

#### SuperMUC Workshop, Garching



















 $\Rightarrow$  E<sub>ex</sub>







 $\Rightarrow E_{ex}$ 

allows to treat neutral excitations  $(n/\pi \rightarrow \pi^*)$ 'charged' excitations (metal $\rightarrow \pi^*$ )







correctly describes state shifts and image charge effects





allows to treat neutral excitations  $(n/\pi \rightarrow \pi^*)$ 'charged' excitations (metal $\rightarrow \pi^*$ )

separated systems:  $||e\Delta SCF = \Delta SCF|$ 



## **Excited State Energetics - First Hints**



? Shallow PESs  $\rightarrow$  Enough  $E_{\rm kin}$  collected in  ${\sim}40$  fs ?



# **Excited State Energetics - First Hints**



- ? Shallow PESs  $\rightarrow$  Enough  $E_{\rm kin}$  collected in  ${\sim}40$  fs ?
- $! \rightarrow$  Dynamics simulations required !













#### **Efficient Optimizations**

- Preoptimizations:
- Force-Fields, Tight-Binding
- Increasing Efficiency:
   vdW Embedding





Masters Thesis: Georg Michelitsch





Strobusch, Scheurer, JCP, 140, 074111 (2014)





Strobusch, Scheurer, JCP, 140, 074111 (2014)



#### **Quantum Dynamics**

Adsorbate Photodynamics simulations need to

- be efficient
- be in adiabatic representation
- account for non-adiabatic transitions
- work with simple coupling schemes
- be compatible with friction models





#### **Quantum Dynamics**

Adsorbate Photodynamics simulations need to

- be efficient
- be in adiabatic representation
- account for non-adiabatic transitions
- work with simple coupling schemes
- be compatible with friction models

 $\Rightarrow \mbox{Trajectory-Surface Hopping (TSH)} \\ \Rightarrow \mbox{Independent-Electron TSH}$ 



Tully, JCP, 93, 1061 (1990); Shenvi, Roy, Tully, JCP, 130, 174107 (2009)







#### We have ....

- ...established an efficient technique to simulate structure, energetics, photoresponse of adsorbed molecular switches
- ...identified reason for switching/non-switching on metal surfaces
- ...analyzed different parameters that control the function

#### We currently / We will...

- ...investigate the excited state topology and mechanism
- ...perform explicit dynamical simulation of photoswitching

Mercurio, Maurer, *et al.*, PRB, 88 (2013), 035421. Maurer, Reuter, Angew. Chem. Int. Ed. **51** (2012), 12009-12011. Maurer and Reuter, JCP **139** (2013), 014708. Gopakumar *et al.* Angew. Chem. Int. Ed. 52 (2013), 11007–11010. Maurer and Reuter, JCP **135** (2011), 224303.



#### We have ....

- ...established an efficient technique to simulate structure, energetics, photoresponse of adsorbed molecular switches
- ...identified reason for switching/non-switching on metal surfaces
- ...analyzed different parameters that control the function

#### We currently / We will...

- ...investigate the excited state topology and mechanism
- ...perform explicit dynamical simulation of photoswitching

#### Thank you for your attention!

Mercurio, Maurer, *et al.*, PRB, 88 (2013), 035421. Maurer, Reuter, Angew. Chem. Int. Ed. **51** (2012), 12009-12011. Maurer and Reuter, JCP **139** (2013), 014708. Gopakumar *et al.* Angew. Chem. Int. Ed. 52 (2013), 11007–11010. Maurer and Reuter, JCP **135** (2011), 224303.

Many Thanks to SuperMUC and Team!