Parallel Particle Simulation in Multiscale Fluid Representations

SuperMUC Review Workshop

Philipp Neumann, Tobias Weinzierl, Denis Jarema, Bart Verleye

8 July 2014, neumanph@in.tum.de

Motivation

- 1 Multi-level fluid-particle treatment
- 2 Many-particle systems: Spacetree algorithms
- 3 Outlook: Walking down the scales

Lattice Boltzmann–Navier-Stokes: Models

Navier-Stokes

Mesh-based

Fluid in equilibrium

DoF: velocities **u**, pressure *p*

Lattice Boltzmann

Mesh-based

Fluid close to equilibrium

DoF: distribution functions f_i

$$f_i(\mathbf{x} + \mathbf{c}_i dt, t + dt) = f_i(\mathbf{x}, t) + \Delta_i (f - f^{eq})$$

$$\rho(\mathbf{x}, t) = \sum_{i=1}^{Q} f_i$$

$$p(\mathbf{x}, t) = \rho(\mathbf{x}, t) / c_s^2$$

$$\mathbf{u}(\mathbf{x}, t) = \frac{1}{\rho(\mathbf{x}, t)} \sum_{i=1}^{Q} f_i \mathbf{c}_i$$

From Navier-Stokes to Lattice Boltzmann

- Given: ρ , \mathbf{u} , $\partial_{\mathbf{x}_{\beta}}\mathbf{u}_{\alpha} + \partial_{\mathbf{x}_{\alpha}}\mathbf{u}_{\beta}$
- Generally, it holds

From Navier-Stokes to Lattice Boltzmann

- Given: ρ , \mathbf{u} , $\partial_{\mathbf{x}_{\beta}}\mathbf{u}_{\alpha} + \partial_{\mathbf{x}_{\alpha}}\mathbf{u}_{\beta}$
- Generally, it holds

- Split $f_i = f_i^{eq}(\rho, \mathbf{u}) + f_i^{neq}$
- Ansatz¹: continuum \leftrightarrow non-equ. parts as small as possible

 $\min_{f^{neq} \in \mathbb{R}^Q} g(f^{neq})$ such that

 $\sum_{i} f_{i}^{neq} = 0 \qquad \text{mass}$ $\sum_{i} f_{i}^{neq} \mathbf{c}_{i_{\alpha}} = 0 \qquad \text{momentum}$ $\sum_{i} f_{i}^{neq} \mathbf{c}_{i_{\alpha}} \mathbf{c}_{i_{\beta}} = -c_{s}^{2} \tau \left(\partial_{x_{\beta}} \mathbf{u}_{\alpha} + \partial_{x_{\alpha}} \mathbf{u}_{\beta} \right) \qquad \text{stresses}$

¹ P. Neumann, H.-J. Bungartz, M. Mehl, T. Neckel, and T. Weinzierl. Commun. Comput. Phys. 12(1):65–84, 2012.

P. Neumann et al.: Parallel Particle Simulation in Multiscale Fluid Representations SuperMUC Review Workshop, 8 July 2014, neumanph@in.tum.de

πп

Coarse-scale model: NS (fluid) + Faxen² (particle)

² H. Faxen. Appelberg, 1921.

³ A.J.C. Ladd. J. Fluid Mech., 271:285–339, 1994.

P. Neumann et al.: Parallel Particle Simulation in Multiscale Fluid Representations SuperMUC Review Workshop, 8 July 2014, neumanph@in.tum.de

пπ

Particle Displacement in Channel Flow (1)

- Start with LB, Level 3 Switch to
 - NS-Faxen, Level 2 at t = 0.01
 - NS-Faxen, Level 1 at *t* = 0.60
 - NS-Faxen, Level 0 at *t* = 0.80
- Compare to dynamically adaptive LB solution⁴

⁴ P. Neumann and T. Neckel. Computational Mechanics, 51(2):237–253, 2013.

LB	LB-NS
<i>dx_F</i> = 3.1e-3	<i>dx_F</i> = 3.1e-3
$dx_{C} = 2.8e-2$	$dx_{C} = 5.0e-1$
<i>dt_{LB}</i> = 4.8e-7	<i>dt_{LB}</i> = 3.2e-7
	<i>dt_{NS}</i> = 3.0e-5

Particle Displacement in Channel Flow (2)

- Start with LB, Level 3 Switch to
 - NS-Faxen, Level 2 at t = 0.01
 - NS-Faxen, Level 1 at *t* = 0.60
 - NS-Faxen, Level 0 at *t* = 0.80
- Compare to dynamically adaptive LB solution⁴

⁴ P. Neumann and T. Neckel. Computational Mechanics, 51(2):237–253, 2013.

P. Neumann et al.: Parallel Particle Simulation in Multiscale Fluid Representations SuperMUC Review Workshop, 8 July 2014, neumanph@in.tum.de

LB	LB-NS
<i>dx_F</i> = 3.1e-3	<i>dx_F</i> = 3.1e-3
<i>dx_C</i> = 2.8e-2	$dx_{C} = 5.0e-1$
<i>dt_{LB}</i> = 4.8e-7	<i>dt_{LB}</i> = 3.2e-7
	<i>dt_{NS}</i> = 3.0e-5

Particle Displacement in Channel Flow (2)

- Start with LB, Level 3 Switch to
 - NS-Faxen, Level 2 at t = 0.01
 - NS-Faxen, Level 1 at *t* = 0.60
 - NS-Faxen, Level 0 at *t* = 0.80
- Compare to dynamically adaptive LB solution⁴

⁴ P. Neumann and T. Neckel. Computational Mechanics, 51(2):237–253, 2013.

P. Neumann et al.: Parallel Particle Simulation in Multiscale Fluid Representations SuperMUC Review Workshop, 8 July 2014, neumanph@in.tum.de

LB	LB–NS
<i>dx_F</i> = 3.1e-3	<i>dx_F</i> = 3.1e-3
<i>dx_C</i> = 2.8e-2	<i>dx_C</i> = 5.0e-1
<i>dt_{LB}</i> = 4.8e-7	<i>dt_{LB}</i> = 3.2e-7
	<i>dt_{NS}</i> = 3.0e-5

Particle Displacement in Channel Flow (2)

- Start with LB, Level 3 Switch to
 - NS-Faxen, Level 2 at t = 0.01
 - NS-Faxen, Level 1 at *t* = 0.60
 - NS-Faxen, Level 0 at *t* = 0.80
- Compare to dynamically adaptive LB solution⁴

⁴ P. Neumann and T. Neckel. Computational Mechanics, 51(2):237–253, 2013.

P. Neumann et al.: Parallel Particle Simulation in Multiscale Fluid Representations SuperMUC Review Workshop, 8 July 2014, neumanph@in.tum.de

LB	LB–NS
$dx_F = 3.1e-3$	<i>dx_F</i> = 3.1e-3
<i>dx_C</i> = 2.8e-2	$dx_{C} = 5.0e-1$
<i>dt_{LB}</i> = 4.8e-7	<i>dt_{LB}</i> = 3.2e-7
	<i>dt_{NS}</i> = 3.0e-5

Algorithmic Requirement Analysis

- (Transient) Mapping from particles to grid and vice versa
- Linked lists/ cells: inappropriate
 → particles may move more than one cell
- For few particles: global scatter/gather of particle position \rightarrow each rank holds all particle information
- For many particles: localised approach
 → only domains which hold particle maintain particle data

Particle-in-Tree: Algorithm

- Make each cell of spacetree hold array of particles (dynamic, most of time empty)
- Make physics move particle, i.e. update particle positions (local computation within cell)
- Before cell is left: check whether (moved) particle still is within cell.
 Otherwise *lift* it to next coarser level
- Apply lift checks recursively
- Before algorithm descends in spacetree: Check whether refined cell holds particles.
 If so, sieve them into the children (*drop*)
- Apply drops recursively

Remarks:

- Particles belonging to level ℓ are never dropped deeper than level ℓ (drop constraint)
- Benchmarking difficulties: Density, speed, mesh width...

Particle-in-Tree: Scaling

Outlook: Lattice Boltzmann–Molecular Dynamics

Goal:

- Resolve regions of interest by molecular dynamics
- Resolve other regions by Lattice Boltzmann
- Partitioned approach: Macro-Micro-Coupling Tool⁵
 - \rightarrow Separation: molecular dynamics \leftrightarrow Mesh-based solver

⁵ P. Neumann and N. Tchipev. Proceedings of ISPDC, 2012.

пπ

LB–MD: Channel Flow

LB codes:

- Peano framework⁶
- waLBerla⁷
- OpenLB (in preparation)

MD codes:

- Simple MD
- LAMMPS⁸
- ESPResSo⁹ (in preparation)
- MarDyn (planned)

- 3D steady-state coupling
 → velocity relaxation
- LB: 54 × 54 × 54 cells, *dx* = 2.5
- MD: 10⁵ LJ atoms
- MD: periodic boundaries
 + buffer regions

⁶ www.peano-framework.org ⁷ www.walberla.net ⁸ lammps.sandia.gov ⁹ espressomd.org

... for your attention!

