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Computation of physical and chemical properties …
 Chemical behavior, reactivity
 Spectroscopic quantities
 Materials properties

… on a microscopic scale …
 Atoms, molecules
 Clusters, solids (crystals)
 Biomolecules, polymers

… by solving the
Schrödinger equation

Impressive progress over last decades: Nobel Prize in Chemistry 1998 

Computational Chemistry
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Walter Kohn
“for his development of 
density-functional theory”

John A. Pople
“for his development of 
computational methods in 
quantum chemistry”
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Methods of Quantum Chemistry

Basis of quantum chemistry: 
Many-electron Schrödinger equation

 Wave function , nuclear pos. {R}

electron space and spin coords., x; 
 Total energy as expectation value
 High-level wave function theory approximations often far too expensive
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Density Functional Theory (DFT) achieves better accuracy/cost value 

Ground state energy E0 as functional of g.s. electron density 0:

 Kohn-Sham formalism (KS) turns DFT into a practical tool

 Partitioning of total electronic energy
E[] = T[] + Eext[] + Ecoul[] + EX[] + Ecorr[]

 Various approx. for exchange+correlation (XC) EXC[] = EX[] + Ecorr[]

KS orbitals 
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 Expand KS orbitals in “basis set” so that
 Algebraic formulation: Matrix algebra

 DFT calculations require various different numerical algorithms

 Generalized eigenvalue problem

 h depends on C : iterative solution

 Hamilton matrix                                    built from analytic integrals

XC integrals computed numerically
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DFT in Practice
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Plane Wave vs. Localized Basis Sets

Plane Wave Basis
+ FFT/PAW: Very neat approaches
+ Orthogonal basis
+ Basis set easy to improve
 Ideal for calculations solid state 

systems
‒ Repeating images for isolated 

systems or long-range interactions
‒ All-electron calculations impossible
‒ Advanced DFT and wave function 

methods very slow or not available
‒ Charged systems problematic
‒ Elaborate convergence techniques 

essential
‒ Interpretation of electronic 

structure often difficult
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Localized (Gaussian) Basis
+ Admit easier reduction of scaling
+ Fewer basis functions needed
+ Hierarchical models available

(solvation, embedding etc.) 
 Ideal for calculations on 

molecular systems
‒ Less efficient than PW for 

standard DFT calculations
‒ More memory required
‒ Issues when modeling

extended surfaces
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ParaGauss:
Highly Parallelized DFT Implementation
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PARAGAUSS
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 Version 4.0, Technische Universität München, 2012 
T. Belling, T. Grauschopf, S. Krüger, F. Nörtemann, M. Staufer, M. Mayer, 
V. A. Nasluzov, U. Birkenheuer, A. Hu, A. V. Matveev, A. Shor, M. Fuchs-Rohr, 
K. M. Neyman, D. I. Ganyushin,  T. Kerdcharoen, A. Woiterski, S. Majumder, 
A. B. Gordienko, M. Huix i Rotllant, R. Ramakrishnan, G. Dixit, A. Nikodem, 
T. M. Soini, M. Roderus, NR

 Started 1994 as parallel density functional package

 Continuous development,
successful applications to a variety of chemical systems

 Recently major revisions and extensions within IGSSE-MAC initiative

 Favorable for heavy elements, large metal clusters, symmetric systems
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Features of PARAGAUSS
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 Use of group representation theory to block matrices 
Exploit spatial symmetry: 74 point groups & double groups

 Hybrid density functionals

 DFT+U self interaction corrections

 Scalar relativistic method (DKH)

 1st and 2nd order energy gradients
also for scalar relativistics

 Spin-orbit interaction

 Solvation via PCM, RISM

 Embedding in cryst. Environment: 
EPE, covEPE

 Linear response TDDFT for spectra

 High performance parallelization

 PARATOOLS suite for exploring
potential energy surfaces
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system size

Cu10–Cu22 on 512 cores

DLB with cost sorting

DLB, no cost sorting

Static distribution
with cost sorting

Parallelization Approaches
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 Originally master-slave concept (1994)

 Dynamic load balancing (DLB, 2012)
 Self-management: Processes do computation and load balancing
 Initial tasks equally distributed
 Idle process steals part of tasks from randomly chosen other process
 DLB highly efficient, scales favorably with system size

Nikodem, Matveev, Soini, NR; 
Int J Quantum Chem 114 (2014)



 DLB (2012)
 General algorithm for most tasks
 PARAGAUSS:

Hybrid DFT calculation Pt140(CO)8

 21014 Gabcd integrals, 21010 batches
 Efficiency > 93% for up to 2048 cores

Parallelization: Examples
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 Master-Slave (1999)
 Specific algorithms for various tasks
 Efficient already for very small problems

300–700 basis functions, GGA
Belling, Grauschopf, Krüger, Mayer, Nörtemann, Staufer, Zenger, NR
in High Performance Scientific and Engineering Computing,
Bungartz, Durst, Zenger (eds.) Springer 1999

cores

speedup

Nikodem, Matveev, Soini, NR; 
Int J Quantum Chem 114 (2014)

Modelling Catalyst Materials
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 Many properties X(n) scale with surface/volume ratio
or average atomic coordination number

 Binding energies

 Bond-lengths

 Electronic properties

 Adsorption energies 

 Extrapolation: finite systems → bulk or surface

 Bulk or surface modelling

 Physically motivated test set:
Assessment of DFT methods for large metallic species

Transition Metal Clusters
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PBE (II)
PBE0 (IV)
TPSS (I)
TPSSh (III)
M06L (I)
M06 (IV)

Transition Metal Clusters

 Average bond-lengths dav

 Pdn n = 13, 38, 55, 79, 147
local XC functionals

 PBEsol bulk limit most accurate
due to parametrization on solids

 Cohesive energies Ecoh

 Ptn n = 13, 38, 55, 79, 116
local vs. hybrid DFT methods

 Semi-local approximation PBE best

 Hybrid functional TPSSh:
comparable overall accuracy

 Hybrid DFT problematic for metals
but essential for certain situations
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Average Coordination Number

VWN

PBEsol

M06L

PBE Exp. bulk
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Koitz, Soini, Genest, Trickey, NR; 
J Chem Phys 137 (2012)



CO Adsorption on Pt(111)

Adsorption site preference of CO on Pt(111):
 Experimental: Top position
 GGA, semi-local XC functional: hollow position preferred
 Self-interaction affects CO 2p* orbital

→ corrected with empirical self-interaction correction DFT+Umol
 DFT+Umol yields correct site preference but underestimates Eads
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PBE+Umol CO adsorption energies in kJ/mol:

6f 5t 6f 5t
Soini, Krüger, NR, JCP 2014

Mixed Metal Oxides 

 Mixed-metal oxides (Mo, V, Te, Nb/Sb):
promising catalysts with high selectivity

 Mo-V-O systems as example
 Unique structures
 Large unit cell model computationally demanding
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active 
site 

Mo O HV

V3Mo12O63H24



Hybrid Functionals

 GGA (PBE) qualitatively different 
from hybrid DFT (PBE0, B3LYP)

 Reduction steps endothermic in 
PBE, exothermic in PBE0

 GGA calculations questionable
due to self-interaction error

 Results of hybrid methods vary 
with fraction of exact exchange 
(PBE0 vs. B3LYP) 
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Hydrogenation energies of vanadyl groups in a Mo-V 
mixed-metal oxide model cluster

+0.5 H2 +0.5 H2

2
–H2O

�

Zhao, Chiu, Genest, NR; Comp Theor Chem (2014)
http://dx.doi.org/10.1016/j.comptc.2014.06.016

Summary and Outlook

 Methodological progress
 Dynamic load balancing: General algorithm for

highly parallel quantum chemistry
 Parallel exact exchange implementation in ParaGauss for

favorably scaling hybrid DFT calculations for large applications
 Efficient self interaction correction DFT+Umol

 New applications accessible in catalysis: Mixed metal oxides
 Efficient hybrid DFT for electron localization

in mixed oxidation state compounds

 Further development
 Sparse, parallel data structures
 Efficient memory management, caching
 Algorithmic improvements: Linear scaling, convergence acceleration
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