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Computation of physical and chemical properties …
 Chemical behavior, reactivity
 Spectroscopic quantities
 Materials properties

… on a microscopic scale …
 Atoms, molecules
 Clusters, solids (crystals)
 Biomolecules, polymers

… by solving the
Schrödinger equation

Impressive progress over last decades: Nobel Prize in Chemistry 1998 

Computational Chemistry
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Walter Kohn
“for his development of 
density-functional theory”

John A. Pople
“for his development of 
computational methods in 
quantum chemistry”
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Methods of Quantum Chemistry

Basis of quantum chemistry: 
Many-electron Schrödinger equation

 Wave function , nuclear pos. {R}

electron space and spin coords., x; 
 Total energy as expectation value
 High-level wave function theory approximations often far too expensive
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Density Functional Theory (DFT) achieves better accuracy/cost value 

Ground state energy E0 as functional of g.s. electron density 0:

 Kohn-Sham formalism (KS) turns DFT into a practical tool

 Partitioning of total electronic energy
E[] = T[] + Eext[] + Ecoul[] + EX[] + Ecorr[]

 Various approx. for exchange+correlation (XC) EXC[] = EX[] + Ecorr[]

KS orbitals 
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 Expand KS orbitals in “basis set” so that
 Algebraic formulation: Matrix algebra

 DFT calculations require various different numerical algorithms

 Generalized eigenvalue problem

 h depends on C : iterative solution

 Hamilton matrix                                    built from analytic integrals

XC integrals computed numerically
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DFT in Practice
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Plane Wave vs. Localized Basis Sets

Plane Wave Basis
+ FFT/PAW: Very neat approaches
+ Orthogonal basis
+ Basis set easy to improve
 Ideal for calculations solid state 

systems
‒ Repeating images for isolated 

systems or long-range interactions
‒ All-electron calculations impossible
‒ Advanced DFT and wave function 

methods very slow or not available
‒ Charged systems problematic
‒ Elaborate convergence techniques 

essential
‒ Interpretation of electronic 

structure often difficult
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Localized (Gaussian) Basis
+ Admit easier reduction of scaling
+ Fewer basis functions needed
+ Hierarchical models available

(solvation, embedding etc.) 
 Ideal for calculations on 

molecular systems
‒ Less efficient than PW for 

standard DFT calculations
‒ More memory required
‒ Issues when modeling

extended surfaces
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ParaGauss:
Highly Parallelized DFT Implementation
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PARAGAUSS
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 Version 4.0, Technische Universität München, 2012 
T. Belling, T. Grauschopf, S. Krüger, F. Nörtemann, M. Staufer, M. Mayer, 
V. A. Nasluzov, U. Birkenheuer, A. Hu, A. V. Matveev, A. Shor, M. Fuchs-Rohr, 
K. M. Neyman, D. I. Ganyushin,  T. Kerdcharoen, A. Woiterski, S. Majumder, 
A. B. Gordienko, M. Huix i Rotllant, R. Ramakrishnan, G. Dixit, A. Nikodem, 
T. M. Soini, M. Roderus, NR

 Started 1994 as parallel density functional package

 Continuous development,
successful applications to a variety of chemical systems

 Recently major revisions and extensions within IGSSE-MAC initiative

 Favorable for heavy elements, large metal clusters, symmetric systems
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Features of PARAGAUSS
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 Use of group representation theory to block matrices 
Exploit spatial symmetry: 74 point groups & double groups

 Hybrid density functionals

 DFT+U self interaction corrections

 Scalar relativistic method (DKH)

 1st and 2nd order energy gradients
also for scalar relativistics

 Spin-orbit interaction

 Solvation via PCM, RISM

 Embedding in cryst. Environment: 
EPE, covEPE

 Linear response TDDFT for spectra

 High performance parallelization

 PARATOOLS suite for exploring
potential energy surfaces
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system size

Cu10–Cu22 on 512 cores

DLB with cost sorting

DLB, no cost sorting

Static distribution
with cost sorting

Parallelization Approaches
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 Originally master-slave concept (1994)

 Dynamic load balancing (DLB, 2012)
 Self-management: Processes do computation and load balancing
 Initial tasks equally distributed
 Idle process steals part of tasks from randomly chosen other process
 DLB highly efficient, scales favorably with system size

Nikodem, Matveev, Soini, NR; 
Int J Quantum Chem 114 (2014)



 DLB (2012)
 General algorithm for most tasks
 PARAGAUSS:

Hybrid DFT calculation Pt140(CO)8

 21014 Gabcd integrals, 21010 batches
 Efficiency > 93% for up to 2048 cores

Parallelization: Examples
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 Master-Slave (1999)
 Specific algorithms for various tasks
 Efficient already for very small problems

300–700 basis functions, GGA
Belling, Grauschopf, Krüger, Mayer, Nörtemann, Staufer, Zenger, NR
in High Performance Scientific and Engineering Computing,
Bungartz, Durst, Zenger (eds.) Springer 1999

cores

speedup

Nikodem, Matveev, Soini, NR; 
Int J Quantum Chem 114 (2014)

Modelling Catalyst Materials
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 Many properties X(n) scale with surface/volume ratio
or average atomic coordination number

 Binding energies

 Bond-lengths

 Electronic properties

 Adsorption energies 

 Extrapolation: finite systems → bulk or surface

 Bulk or surface modelling

 Physically motivated test set:
Assessment of DFT methods for large metallic species

Transition Metal Clusters
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PBE (II)
PBE0 (IV)
TPSS (I)
TPSSh (III)
M06L (I)
M06 (IV)

Transition Metal Clusters

 Average bond-lengths dav

 Pdn n = 13, 38, 55, 79, 147
local XC functionals

 PBEsol bulk limit most accurate
due to parametrization on solids

 Cohesive energies Ecoh

 Ptn n = 13, 38, 55, 79, 116
local vs. hybrid DFT methods

 Semi-local approximation PBE best

 Hybrid functional TPSSh:
comparable overall accuracy

 Hybrid DFT problematic for metals
but essential for certain situations
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Average Coordination Number

VWN

PBEsol

M06L

PBE Exp. bulk
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270

280

PW91

dav/pm

Ecoh/kJmol-1

Koitz, Soini, Genest, Trickey, NR; 
J Chem Phys 137 (2012)



CO Adsorption on Pt(111)

Adsorption site preference of CO on Pt(111):
 Experimental: Top position
 GGA, semi-local XC functional: hollow position preferred
 Self-interaction affects CO 2p* orbital

→ corrected with empirical self-interaction correction DFT+Umol
 DFT+Umol yields correct site preference but underestimates Eads
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PBE+Umol CO adsorption energies in kJ/mol:

6f 5t 6f 5t
Soini, Krüger, NR, JCP 2014

Mixed Metal Oxides 

 Mixed-metal oxides (Mo, V, Te, Nb/Sb):
promising catalysts with high selectivity

 Mo-V-O systems as example
 Unique structures
 Large unit cell model computationally demanding
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active 
site 

Mo O HV

V3Mo12O63H24



Hybrid Functionals

 GGA (PBE) qualitatively different 
from hybrid DFT (PBE0, B3LYP)

 Reduction steps endothermic in 
PBE, exothermic in PBE0

 GGA calculations questionable
due to self-interaction error

 Results of hybrid methods vary 
with fraction of exact exchange 
(PBE0 vs. B3LYP) 
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Hydrogenation energies of vanadyl groups in a Mo-V 
mixed-metal oxide model cluster

+0.5 H2 +0.5 H2

2
–H2O

�

Zhao, Chiu, Genest, NR; Comp Theor Chem (2014)
http://dx.doi.org/10.1016/j.comptc.2014.06.016

Summary and Outlook

 Methodological progress
 Dynamic load balancing: General algorithm for

highly parallel quantum chemistry
 Parallel exact exchange implementation in ParaGauss for

favorably scaling hybrid DFT calculations for large applications
 Efficient self interaction correction DFT+Umol

 New applications accessible in catalysis: Mixed metal oxides
 Efficient hybrid DFT for electron localization

in mixed oxidation state compounds

 Further development
 Sparse, parallel data structures
 Efficient memory management, caching
 Algorithmic improvements: Linear scaling, convergence acceleration
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