Lattice QCD simulations on SuperMUC and beyond

Hinnerk Stüben

SuperMUC Status and Results Workshop Leibniz-Rechenzentrum, Garching July 9, 2014

Overview

- supercomputing aspects of Lattice QCD simulations
- QCD program: BQCD
- SIMD vectorisation
- future performance expectations

BQCD in production

- can simulate $N_f = 2 + 1$ fermion flavours coupled to QED
- authors: H.S. and Yoshifumi Nakamura (RIKEN, Japan)
- \bullet used by the QCDSF collaboration
 - on supercomputers at LRZ (project h006z)
 - HLRB-I: Hitachi SR8000 (2001-2006)
 - HLRB-II: SGI Altix 4700 (2007-2011)
 - SuperMUC: IBM iDataPlex (2012)
- and lattice QCD groups at Universität Regensburg

BQCD benchmark

- fhe $N_f = 2$ version is a well known supercomputer benchmark
- the benchmark is the *conjugate gradient* solver
- benchmark suites containing BQCD
 - LRZ
 - HLRB-II
 - \circ SuperMUC
 - North German Supercomputing Alliance (HLRN)
 - HLRN-I
 - HLRN-II
 - HLRN-III
 - PRACE

BQCD benchmark

- scales to large numbers of cores (at least 300.000)
- communication intensive (tests the network)
- can also be used for benchmarking fat nodes (pure OpenMP mode)
- GPU computing

(a multi-GPU version of the kernel was implemented by Mike Clark, NVIDIA)

Performance

- example
 - lattice: $48^3 \times 96$
 - decomposition: 1 imes 16 imes 12 imes 48 processes (9216 cores)
 - lattice per core: 48 \times 3 \times 4 \times 2 (1152 sites)
 - performance: 17.3 TFlop/s (1880 MFlop/s per core)
 - machine: Cray XC30 (HLRN-III, phase 1)
- discussion
 - local volume is small
 - \rightarrow super-linear speedup
 - $\rightarrow\,$ data caches play a roll
 - $\rightarrow\,$ try to improve performance be employing SIMD

SIMD units

• processing of a loop

for i := 1 to 100 do c[i] := a[i] + b[i]

sequential processing

for i := 1 to 100 do

SIMD processing

for i := 1 to 100 **step 4** do

Layout of complex arrays/vectors

B: width of a SIMD unit

Programming loops

```
standard
ocmplex(8), dimension(n) :: a, b, c
   do i = 1, n
       a(i) = b(i) + c(i)
   enddo
• real(8), dimension(n, re:im) :: a, b, c
                                                              'vector'
   do i = 1, n
       a(i, re) = b(i, re) + c(i, re)
       a(i, im) = b(i, im) + c(i, im)
   enddo
• real(8), dimension(4, re:im, n/4) :: a, b, c
                                                             'SIMD ready'
   do i = 1, n, 4
       a(:, re, i) = b(:, re, i) + c(:, re, i)
       a(:, im, i) = b(:, im, i) + c(:, im, i)
   enddo
                                                             SIMD intrinsics
• real(8), dimension(4, re:im, n/4) :: a, b, c
   do i = 1, n, 4
       Store(a(re, i)), Add(Load(b(re, i), Load(c(re, i)))
       Store(a(im, i)), Add(Load(b(im, i), Load(c(im, i)))
   enddo
H. Stüben – Lattice QCD simulations on SuperMUC and beyond – SuperMUC Workshop, LRZ Garching, July 2014
                                                                          8
```

What the compiler does with typical QCD loops

Іоор	implementation	performance	
		[MFlop/s per core]	
		L2 cache	memory
	standard	5670	880
$\left(\begin{array}{c}\bullet\\\bullet\end{array}\right)_{+}=\left(\begin{array}{c}\bullet\\\bullet\\\bullet\end{array}\right)_{\times}\left(\begin{array}{c}\bullet\\\bullet\end{array}\right)_{\times}\left(\begin{array}{c}\bullet\\\bullet\end{array}\right)$	'vector'	1820	930
$\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right)_{i} \left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array}\right)_{i} \left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \end{array}\right)_{i} \left(\begin{array}{c} \bullet \\ \bullet $	'SIMD ready'	9930 <i>←</i>	990
	SIMD intrinsics	9240	900
	standard	6230	1260
$\left(\begin{array}{ccc}\bullet&\bullet\\\bullet&\bullet\end{array}\right)_{+}=\left(\begin{array}{ccc}\bullet&\bullet&\bullet\\\bullet&\bullet&\bullet\end{array}\right)_{\times}\left(\begin{array}{ccc}\bullet&\bullet\\\bullet&\bullet\end{array}\right)$	'vector'	2240	1290
$\left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} = \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet \\ \bullet & \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet \\ \bullet \\ \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet \\ \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \end{array}\right)_{i}^{-1} \left(\begin{array}{ccc} \bullet & \bullet \\ \bullet \\ \bullet \\$	'SIMD ready'	2290 <i>←</i>	950
	SIMD intrinsics	10200	1270

- Intel compiler 14.0.2, flags: -03 -mavx
- run on all cores of a HLRN-III node $(2 \times 12 \text{ cores})$
- complex arithmetic, loop length = 512 (cache is cleared in the *memory* case)

Points to care about

The SIMD approach affects all parallelisation levels:

- loop body
 - neighbour access
- OpenMP
 - work sharing
- MPI
 - domain decomposition

Two implementation details

• data layout in BQCD (4 dimensions, chessboard decomposition, 9-point stencil)

• loops in BQCD (run over one colour and are collapsed)

do t = 1, Nt \longrightarrow do i = 1, vol/2 do z = 1, Nz \dots do y = 1, Ny do x = 1, Nx/2 \dots

 \rightsquigarrow neighbour access (\rightarrow next slide)

Chessboard decomposition in two (and more) dimensions

y İ	C	С	D	D	E	E	F	F	periodi bounda
	(0,3)	(1,3)	(2,3)	(3,3)	(4,3)	(5,3)	(6,3)	(7,3)	
	8	8	9	9	A	A	В	В	
	(0,2)	(1,2)	(2,2)	(3,2)	(4,2)	(5,2)	(6,2)	(7,2)	
	4	4	5	5	6	6	7	7	
	(0,1)	(1,1)	(2,1)	(3,1)	(4,1)	(5,1)	(6,1)	(7,1)	
	0	0	1	1	2	2	3	3	
	(0,0)	(1,0)	(2,0)	(3,0)	(4,0)	(5,0)	(6,0)	(7,0)	x

periodic boundary conditions

	x-direction			y-direction	
sites	neighbours	neighbours	sites	neighbours	neighbours
	forward	backward		forward	backward
0123	0123	3012	0123	4567	CDEF
4567	5674	4567	4567	89AB	0123
89AB	89AB	B89A	89AB	CDEF	4567
CDEF	DEFC	CDEF	CDEF	0123	89AB

SIMD and OpenMP

• OpenMP work sharing might destroy *alignment*

```
!$omp parallel do schedule(static)
do i = 1, 28
    y(i) = ...
enddo
```


- \rightarrow simd construct in OpenMP 4.0
 - no problem for 'OpenMP ready' loops

SIMD and domain decompositions in BQCD

• recall (implicit) loop structure (Nx, Ny, Nz, Nt might be global or local lattice dimensions):

do t = 1, Nt
$$\longrightarrow$$
 do i = 1, vol/2
do z = 1, Nz \dots
do y = 1, Ny
do x = 1, Nx/2
 \dots

- globally Nx = Ny = Nz = Nspace and Nt = Ntime = 2 × Nspace
- SIMD view
 - Nspace/2 might not be a multiple of the simd width
 - $\rightarrow\,$ choose t to be the fastest running dimension
- MPI view
 - boundaries in the slowest running dimension are optimal for MPI (are consecutive in memory)
 - $\rightarrow\,$ choose the longest dimension to be the slowest running dimension

Discussion

- general aspects
 - in future it might suffice to program 'SIMD ready' (hopefully)
 - still, SIMDisation might require other conceptual changes
- BQCD specific
 - in the super-linear scaling region, about half of the time is spent in MPI communication
 - if compute performance is improved, MPI communication should be accelerated as well
 - remote direct memory access (RDMA)
 - $\circ~$ overlapping communication and computation

Future performance expectations

• benchmark performance and machine size expectations (assumption: sustained performance per core is constant)

	starting point	next lattice	nice to have
lattice size	$48^3 \times 96$	$64^3 \times 128$	$96^3 imes 192$
#cores	9.000	32.000	145.000
performance	17.3 TF	60 TF	220 TF

- machine usage model
 - on a machine with a hierarchical network it could be that good performance at high core counts can only be achieved on certain partitions
 - in that situation block times would be preferable over scheduling individual jobs