Fluid-Structure Interaction of Thin Structures in Turbulent Flows

G. De Nayer, A. Kalmbach and M. Breuer

Department of Fluid Mechanics (PfS) Helmut–Schmidt–University (HSU), Hamburg, Germany

M. Münsch

S. Sicklinger, R. Wüchner, K.U. Bletzinger

Institute of Fluid Mechanics University of Erlangen–Nürnberg, Germany Chair of Structural Analysis Technical University of Munich, Germany

SuperMUC Review Workshop Garching, July 2014

2 Computational Methodology

3 Validation

- Definition of the Test Cases
- Simulations and Comparison with Experiments (FSI-PfS-2a)

2 Computational Methodology

3 Validation

- Definition of the Test Cases
- Simulations and Comparison with Experiments (FSI-PfS-2a)

Tents / Sun Shades / Mobile Umbrellas

Motivation / Long-term Objectives

2 Computational Methodology

3 Validation

- Definition of the Test Cases
- Simulations and Comparison with Experiments (FSI-PfS-2a)

FSI in Turbulent Flows

Publication

Breuer, M., De Nayer, G., Münsch, M., Gallinger, T., Wüchner, R.:

Fluid-Structure Interaction Using a Partitioned Semi-Implicit Predictor-Corrector Coupling Scheme for the Application of Large-Eddy Simulation.

Journal of Fluids and Structures 29, 107-130, 2012.

1 Motivation / Objectives

2 Computational Methodology

3 Validation

- Definition of the Test Cases
- Simulations and Comparison with Experiments (FSI-PfS-2a)

1 Motivation / Objectives

2 Computational Methodology

3 Validation

• Definition of the Test Cases

• Simulations and Comparison with Experiments (FSI-PfS-2a)

FSI Test Cases for Turbulent Flows

Publications for FSI-PfS-1a

• De Nayer, G., Kalmbach, A. Breuer, M., Sicklinger, S. and Wüchner, R.:

Flow past a cylinder with a flexible splitter plate: a complementary experimental-numerical investigation and a new FSI test case (FSI-PfS-1a).

Int. Journal of Computers and Fluids 99, 18-43, 2014.

• http://qnet-ercoftac.cfms.org.uk/w/index.php/UFR_2-13

Publications for FSI-PfS-2a

• Kalmbach, A. and Breuer, M.:

Experimental PIV/V3V Measurements of Vortex-Induced Fluid-Structure Interaction in Turbulent Flow New Benchmark FSI-PfS-2a.

Journal of Fluids and Structures 42, 369-387, 2013.

• De Nayer, G. and Breuer, M.:

Numerical FSI Investigation based on LES: Flow past a cylinder with a flexible splitter plate involving large deformations (FSI-PfS-2a).

Submitted.

http://qnet-ercoftac.cfms.org.uk/w/index.php/UFR_2-14

FSI Test Cases for Turbulent Flows

1 Motivation / Objectives

2 Computational Methodology

3 Validation

- Definition of the Test Cases
- Simulations and Comparison with Experiments (FSI-PfS-2a)

FSI-PfS-2a: Experiments

Fluid/CFD:

- wall–resolved LES
- 13.5 million CVs
- 72 CVs in spanwise direction
- periodic boundary conditions

Structure/CSD:

- 7-parameter shell elements
- 30×10 quadrilateral four-node elements
- zero z–deformation vs. periodic b.c.
- (Rayleigh damping)

FSI-PfS-2a: Computational Setup

93 cores needed for each simulation

- $\bullet~$ 13.5 million CVs on 91 blocks \rightarrow 91 processes for CFD
- 1 process for CSD
- 1 process for coupling program

2 seconds physical time computed for each simulation

- CPU: 1000 hours wall-clock
- RAM: 242 Mbytes per core ightarrow 22 Gbytes for the entire simulation

Sensitivity study on FSI-PfS-2a

• about 30 simulations with different parameters conducted

FSI-PfS-2a: Deflection of the Structure

FSI-PfS-2a: Deflection of the Structure

Frequency						
	St	f _{FSI} Erro				
		(Hz)	(%)			
EXP	0.177	11.25	-			
CFD	0.183	11.53	2.49			

Frequency						
	St	f _{FSI}	Error			
		(Hz)	(%)			
EXP	0.177	11.25	-			
CFD	0.183	11.53	2.49			

Displacements

	$\left. U_{y}/D \right _{max}$	Error	$\left. U_{y}/D \right _{min}$	Error
		(%)		(%)
EXP	0.667	_	-0.629	-
CFD	0.670	0.5	-0.674	7.2

FSI-PfS-2a: Comparison Experiment/Simulation 17

Streamwise velocity in the midplane

FSI-PfS-2a: Simulated Instantaneous Flow

Streamwise velocity

(t \approx 1/24 T)

Transverse velocity

FSI-PfS-2a: Comparison of Phase-averaged Data

 $\overline{}$ FSI-PfS-2a: Comparison of Phase-averaged Data (t \approx 5/24 T)

1 Motivation / Objectives

2 Computational Methodology

3 Validation

- Definition of the Test Cases
- Simulations and Comparison with Experiments (FSI-PfS-2a)

Computational Methodology for FSI and Thin Structures

- Each program **specialized** in its task
- Each program parallelized (MPI, OpenMP)
- New FSI coupling scheme developed
 - based on explicit time-marching scheme (predictor-corrector), but nevertheless stable and strong FSI algorithm
 - corrector step and structural computation directly connected in a FSI subiteration loop to achieve dynamic equilibrium

Computational Methodology for FSI and Thin Structures

- Each program **specialized** in its task
- Each program parallelized (MPI, OpenMP)
- New FSI coupling scheme developed
 - based on explicit time-marching scheme (predictor-corrector), but nevertheless stable and strong FSI algorithm
 - corrector step and structural computation directly connected in a FSI subiteration loop to achieve dynamic equilibrium

Validation

- Methodology validated for laminar flows (not presented here)
- Methodology validated for turbulent flows (FSI-PfS-2a,...)
- Generation of FSI test cases for the community with **experimental** and numerical data available online (ERCOFTAC/QNET wiki)

Outlook

- New coupling program (EMPIRE) \rightarrow more flexibility in the coupling
- Reduce the CPU costs with the help of special wall models

Acknowledgments:

- Thanks to Jens Nikolas Wood for his support.
- Financially supported by the Deutsche Forschungsgemeinschaft (BR 1847/12-1)
- Computations on the Top-Level Computer **SuperMUC** at LRZ Munich.

Thanks for your attention