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The Big Picture
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e Design of new materials:
preparation, synthesis, and characterization is complex and costly

o About 240000 inorganic materials are known to exist (Springer
Materials)

e Basic properties determined for very few of them
e« Number of possible materials: practically infinite

=> New materials with superior properties exist but not yet known

e Data analytics tools will help to identify trends and anomalies in
data and guide discovery of new materials
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NOVEL MATERIALS DISCOVERY

The NOMAD Laboratory

A European Centre of Excellence

PROJECT INDUSTRY TEAM RELATED PROJECTS NEWS PRESSKIT CONTACTUS

BIG-DATA ANALYTICS ADVANCED GRAPHICS

NOMAD Success Stories

Finding local patterns and structure
in big-data of materials-science
remains a challenge

The Novel Materials Discovery (NOMAD) Laboratory maintains the largest Repository, for
input and output files of all important computational materials science codes.

From its open-access data, it builds several Big-Data Services helping to advance materials

science and engineering.

To learn more, click on the buttons above. You can also watch our 3-minute summary on
the NOMAD Laboratory CoE at YouTube (or at YOUKU in China).

YA | .., . .
New data mining tools must be developed

NOMAD Scope and Overview to help uncover hidden. relations
in materials-science data
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Archive (code independent)
52M total-energy calculations
[90% coming from
AFLOW (Curtarolo)
OQMD (Wolverton)
Materials Project (Ceder)]

Repository
(raw data)

Visualization
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Learning/discovering maps of materials

properties. A quantum many-body problem
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Compressed sensing: the quest for

descriptors and predictive models

Structure map with compressed-sensing algorithm,
starting from 7 atomic features
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Compressed sensing

Aim: finding descriptors and learning predictive models

Ansatz:
P=cld1 +czd2+ ...Ttcd

n n

P : property of interest

d, ...d :features,i.e., (nhonlinear) functions of primary features (EA, IP, ...)

1 n

Cy .o

argmin || P — DcH% + Allelo
CERJM

c¢_: unknown coefficients => as few as possible are nonzero

d;: iterative construction with

features and operators (+, %, /, 2, ..
IP(B) — EA(B) |rs(A) —1,(B)|

rp(A)?

exp(rs(A))
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SISSO: sure independence screening

plus sparsifying operator

Embarrassingly parallel

+ SIS: independent scalar products of features on property or residual)
- partial ranking

+ SO: independent least square regression

- partial ranking

+ outer parallelization for cross validation

- smart strategies needed for matrix storage
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Ouyang, Curtarolo, Ahmetcik, Scheffler & LMG, PRM (2018) arXiv:1710.03319



SISSO: sure independence screening

plus sparsifying operator
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Charts/maps of materials

argmin(||P — DcH% + Alle|lo)
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Number of data points in
the overlap region, as

New cost function to be minimized: function of selected d

overlap of convex domains

Iterative generation of feature subspaces
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SISSO: metal/nonmetal classification

of binary materials
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SISSO: predicting novel honeycomb

(~2D)
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SISSO: predicting novel honeycomb

(~2D)
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Perovskites’ stability:

Improving on Goldschmidt Tolerance Factor
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Goldschmidt™ stable perovskites: accuracy 74%
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Bartel, Sutton, Goldsmith, Ouyang, Musgrave, LMG &Scheffler, arXiv:1801.07700 (2018)
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Perovskites’ stability:

Improving on Goldschmidt Tolerance Factor
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... and more

Continuous property

o Adsorption energy of O on metal-oxide surfaces

« Adsorption energy and OCO angle of adsorbed CO, on metal-
oxide surfaces

e Adsorption energy of metal atoms on metal-alloys surfaces

Features: atoms (of the surface) and pristine surface

Classification

e Tetradymite 5-component 3d topological insulators (vs trivial
insulators) arXiv:1808.04733

Features: atoms



... and further more

Convolutional neural networks for (local) crystal-structure recognition
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