
  

HPC for 
Computationally and Data-Intensive 

Problems

Luca M. Ghiringhelli
Fritz-Haber-Institut der MPG, Berlin

SuperMUC-NG
Next-Gen Science Symposium
Munich, November 22, 2018



  

● Design of new materials: 
preparation, synthesis, and characterization is complex and costly 

Data-driven materials science
The Big Picture



  

● Design of new materials: 
preparation, synthesis, and characterization is complex and costly 

● About 240 000 inorganic materials are known to exist (Springer 
Materials) 

Data-driven materials science
The Big Picture



  

● Design of new materials: 
preparation, synthesis, and characterization is complex and costly 

● About 240 000 inorganic materials are known to exist (Springer 
Materials) 

● Basic properties determined for very few of them

Data-driven materials science
The Big Picture



  

● Design of new materials: 
preparation, synthesis, and characterization is complex and costly 

● About 240 000 inorganic materials are known to exist (Springer 
Materials) 

● Basic properties determined for very few of them

● Number of possible materials: practically infinite

Data-driven materials science
The Big Picture



  

● Design of new materials: 
preparation, synthesis, and characterization is complex and costly 

● About 240 000 inorganic materials are known to exist (Springer 
Materials) 

● Basic properties determined for very few of them

● Number of possible materials: practically infinite

⇨ New materials with superior properties exist but not yet known

 

Data-driven materials science
The Big Picture



  

● Design of new materials: 
preparation, synthesis, and characterization is complex and costly 

● About 240 000 inorganic materials are known to exist (Springer 
Materials) 

● Basic properties determined for very few of them

● Number of possible materials: practically infinite

⇨ New materials with superior properties exist but not yet known

 

● Data analytics  tools  will help to identify trends and anomalies in 
data and guide discovery of new materials

Data-driven materials science
The Big Picture
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Learning/discovering maps of materials 
properties. A quantum many-body problem



  L. Ghiringhelli et al., 
PRL 2015, NJP 2017

Compressed sensing: the quest for
descriptors and predictive models
Structure map with compressed-sensing algorithm, 
starting from 7 atomic features



  

Compressed sensing
Aim: finding descriptors and learning predictive models
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Ouyang, Curtarolo, Ahmetcik, Scheffler & LMG, PRM (2018) arXiv:1710.03319 

SISSO: sure independence screening 
plus sparsifying operator
Embarrassingly parallel
+ SIS: independent scalar products of features on property or residual) 
- partial ranking
+ SO: independent least square regression
- partial ranking
+ outer parallelization for cross validation
- smart strategies needed for matrix storage
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1. # points in the convex overlap domain
2. Area of the domain overlap 
3. Distance between domains
Good also for multi-categorical problems
(see A. F. Bialon et al., Chem. Mater. 28, 2550 (2016))

P (property)
Δ1D (residual)

S2D S1D

Iterative generation of feature subspaces

New cost function to be minimized: 
overlap of convex domains

Number of data points in 
the overlap region, as 
function of selected d

Charts/maps of materials



x Atomic fraction
IE Ionization energy
χ Electronegativity Ouyang, et al. PRM (2018)

SISSO: metal/nonmetal classification
of binary materials 



  

A II III IV
B VI V IV
X VII VII VII

Data source: high throughput DFT (FHI-aims, Carlos Mera Acosta)

A B X

SISSO: predicting novel honeycomb 
(~2D) topological insulators
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SISSO: predicting novel honeycomb 
(~2D) topological insulators
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Oxidation state

1 / μ = Octahedral factor

Goldschmidt* stable perovskites: 

Our stable perovskites:

ABX3

t = 0.825 t = 1.059

τ = 4.18

accuracy 100%

t

τ
τ = 3.31 τ = 5.92 τ = 12.08

Bartel, Sutton, Goldsmith, Ouyang, Musgrave, LMG &Scheffler, arXiv:1801.07700 (2018)

accuracy 74%

Perovskites’ stability: 
Improving on Goldschmidt Tolerance Factor



  

… and more

Continuous property

● Adsorption energy of O on metal-oxide surfaces
● Adsorption energy and OCO angle of adsorbed CO2 on metal-

oxide surfaces 
● Adsorption energy of metal atoms on metal-alloys surfaces

Features: atoms (of the surface) and pristine surface

Classification

● Tetradymite 5-component 3d topological insulators (vs trivial 
insulators) arXiv:1808.04733

Features: atoms



  

… and further more

Convolutional neural networks for (local) crystal-structure recognition
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